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Abstract

When using instrumental variables, researchers often assume that causal effects are
only identified conditional on covariates. We show that the role of these covariates
in applied research is often unclear and that there exists confusion regarding their
ability to mitigate violations of the exclusion restriction. We explain when and how
existing adjustment strategies may lead to “post-instrument” bias. We then discuss
assumptions that are sufficient to identify various treatment effects when adjustment
for post-instrument variables is required. In general, these assumptions are highly re-
strictive, albeit they sometimes are testable. We also show that other existing tests are
generally misleading. Then, we introduce a sensitivity analysis that uses information
on variables influenced by the instrument to gauge the effect of potential violations of
the exclusion restriction. We illustrate it in two replications of existing analyses and
summarize our results in easy-to-understand guidelines.
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1 Introduction

Identification of causal effects using instrumental variables is a popular approach in both

experimental and observational research, and recent decades have seen an increasingly so-

phisticated understanding of what effects such instruments may identify. Based on the

seminal work by Angrist, Imbens and Rubin (1996), social scientists are nowadays aware

of the role that assumptions such as the exclusion restriction or first-stage monotonicity

play (Betz, Cook and Hollenbach 2018; Marshall 2016; Sovey and Green 2011). However,

we contend that the choice of covariates in instrumental variable (IV) identification is not

well-understood and leads to biases in applied research. Of special interest is the widespread

adjustment for “post-instrument” variables to address a violation of the exclusion restriction,

on which existing guidelines are either silent or contradictory.

In this paper, we give straightforward advice for researchers on how to think about

covariates in the context of IV analysis and which of these need to be controlled for. To this

end, we uncover new identification results and subtleties, including with regards to (partial)

tests of identifying assumptions. Furthermore, we develop a semi-parametric sensitivity

analysis that aids applied researchers when there is a direct effect of an instrument that runs

over measured variables.

Our contribution is motivated by both the widespread practice and voiced concerns of re-

searchers that use instrumental variables. We have identified 154 papers published since 2010

in top political science journals1 that use IV and explicitly discuss the exclusion restriction.

Among those, 39 (25%) use post-instrument covariates to justify the exclusion restriction.2

As we will show , this is a lower bound on the phenomenon: There may be other papers that

1The American Political Science Review, the American Journal of Political Science, and

the Journal of Politics.

2See Appendix A. Felton and Stewart (2022, p. 41) review IV papers published in top

sociology journals and assess that 27 out of 34 include potentially post-instrument covariates.

1



did not discuss relevant post-instrument covariates, but should have considered them.

Indeed, some researchers are aware that adjustment for variables on other paths from in-

strument to outcome posits a thorny issue. For example, both Kern and Hainmueller (2009)

and Carnegie and Marinov (2017) use instrumental variables and two-stage least-squares

regression where they choose not (or not always) to control for such variables to avoid

what they call “post-treatment bias”. But there seems to be no justification for this in the

literature, which uses this term for biases that are introduced in standard adjustment iden-

tification strategies, where instruments play no role (Rosenbaum 1984; Angrist and Pischke

2009; Montgomery, Nyhan and Torres 2018). On the other hand, Wucherpfennig, Hunziker

and Cederman (2016), for example, claim that “the instrumental variable logic is immune

to any correlation (and even causation) between the instruments and the covariates”. A

leading econometrics textbook similarly advises to simply control for covariates influenced

by the instrument (Wooldridge 2010, 94, 938). Other standard textbooks like Angrist and

Pischke (2009) and reader’s guides like Sovey and Green (2011) do not discuss such issues.

To fix ideas, consider an example from Angrist (1990), whose identification strategy has

inspired several studies of political behavior (Berinsky and Chatfield 2015). The author is

interested in estimating the effect of serving in the Vietnam war on earnings. The draft was

largely determined by a randomized lottery, and Angrist notes that men who have a low

draft lottery number were more likely to serve in the war. He uses functions of this number

as instruments for military service.

There could be some concerns about the validity of the exclusion restriction. For example,

those who received a low lottery number could have chosen to stay in school to obtain a

deferment (Angrist 1990, 330). This creates a link between the lottery and earnings via

education. So if information on post-lottery education was available, should we control for

it?

In this paper, we answer this question and discuss various related problems. We use both

potential outcomes and directed acyclic graphs (Pearl 2009) in our formal analysis. This
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allows us to give advice to applied researchers that is both easy to formulate and understand.

We first make clear the asymmetric role of pre- and post-instrumental variables. Then,

we illustrate how adjustment for variables influenced by the instrument may not always

be successful, and that adjustment for variables influenced by the treatment will lead to

biases in IV identification even when the IV is unconditionally valid. The mechanics behind

these phenomena resemble the better-known “post-treatment” bias in adjustment strategies

(Montgomery, Nyhan and Torres 2018), although additional, more subtle problems occur.

However, we also show, perhaps to the surprise of some researchers, that adjustment for

variables influenced by the instrument is sometimes necessary for successful identification.

In some cases, we show that this identifies the well-known “local” or a weighted average

treatment effect. For other cases, we propose to identify a new, different treatment effect.

In sum, “post-instrument bias” is quite different from “post-treatment bias”.

The assumptions for valid post-instrument adjustment are highly restrictive, although

we also prove that they are testable under some circumstances. In this context, we discuss

the evidential value and implicit causal assumptions of other informal tests and robustness

checks that are prevalent in the applied literature. We show that these tests are generally

misleading.

What if the strong assumption necessary for identification are not plausible or rejected

by the data? We propose that researchers utilize measures of the variable on the pathway

from the instrument to the outcome for a semi-parametric sensitivity analysis. Our approach

generalizes previous approaches (Conley, Hansen and Rossi 2012; Van Kippersluis and Ri-

etveld 2018) that operate under a strong effect homogeneity assumption and cannot use

sample information to bound biases. We illustrate our approach by reanalyzing the data of

Spenkuch and Tillmann (2018) on the causal effect of Catholicism on the Nazi vote share at

the end of the Weimar Republic, as well as the data of Carnegie and Marinov (2017) on the

effect of foreign aid on human rights. The applications highlight the need to relax stringent

linearity assumptions and to account for potential heterogeneity in causal effects. We make
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our methodology available as an R package.

A formal analysis of violations to the exclusion restriction was already provided in the

seminal paper by Angrist, Imbens and Rubin (1996), but similar to Conley, Hansen and Rossi

(2012) and Van Kippersluis and Rietveld (2018), this did not incorporate post-instrument

variables. A more closely related paper is Deuchert and Huber (2017). They point out that

investigating instruments that may affect more than one variable is also highly relevant be-

cause oftentimes the same instrument is used to study causal effects of different treatment

variables so that researchers might be tempted to adjust for these other treatments. For ex-

ample, Bazzi and Clemens (2013) discuss the “origin of a country’s legal system” instrument

that has been used for at least seven different treatments. Mellon (2024) points out that

weather-related variables like measures of rainfall are often used as instruments for various

relationships, but have been linked empirically to close to 200 variables, each of which con-

stitutes a potential measured violation to the exclusion restriction. Similar to our approach,

Deuchert and Huber (2017) also use causal graphs. However, they use these for illustrative

purposes only and prove their main results under a strong linearity assumption. In contrast,

we discuss these issues in a completely nonparametric framework and integrate causal graphs

with the potential outcomes approach. Importantly, we discuss additional identification as-

sumptions, prove that these are sometimes testable, introduce a new causal estimand, and

propose a new sensitivity analysis. Some of the problems that we discuss are similar to what

Elwert and Winship (2014) and Elwert and Segarra (2022) call “endogenous selection bias”,

and Betz, Cook and Hollenbach (2018), Imai and Kim (2019) and Eggers, Tuñón and Dafoe

(2024) also use causal graphs to illustrate (failures of) IV identification. Our sensitivity

analysis complements the approaches by Conley, Hansen and Rossi (2012) and Cinelli and

Hazlett (2022) that cannot incorporate information on post-instrument covariates. Among

other things, this entails that our sensitivity analysis can make estimates more robust (i.e.,

move farther away from zero into the direction implied by the original estimate), which we

also show in one of our applications.
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2 Understanding Conditional IV Identification Using

Causal Graphs

In this section, we present a series of causal graphs that allow for IV identification of various

treatment effects when the key “ignorability” assumption only holds conditionally. We use

causal graphs because they offer a straightforward formalization of the language already used

by many researchers to communicate assumptions about the causal ordering of variables, di-

rect and indirect effects, confounding, etc. Additionally, they can be integrated with the

popular potential outcomes approach to causality, and allow for a derivation of assumptions

on the distribution of these potential outcomes. Specifically, we interpret graphs as nonpara-

metric structural equation models, as in Imai and Kim (2019). We expand on such formal

aspects in Appendix B.

2.1 A First Causal Graph for our Running Example

Consider again our example from Angrist (1990)’s seminal analysis. Angrist is interested in

the causal effect of serving as a soldier in the Vietnam war (Di) on later earnings Yi. The

draft lottery leads to a binary instrument Zi that indicates draft eligibility.

The “ceiling” for the draft varied by year due to fluctuating demands by the military.

Therefore, the cohort Xi of a man influenced the probability that he would be drafted. At

the same time, birth year is clearly causally prior to the draft and might have other effects

on the outcome. This can easily be depicted in a causal graph such as Figure 1.

The dashed arrows emanating from the Ui-variable indicate that it stands for unobserved

variables that may (directly) influence treatment, outcome, and covariates Xi, but not the

instrument. In the Vietnam draft example, Ui may contain variables describing the socio-

economic status of one’s parents. These will impact the decision to enlist in the military and

on later socio-economic outcomes. They may also affect the timing of birth. The existence

of such unobserved confounders is the central motivation for employing IV identification
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because they make identification of the effect of Di on Yi via regression impossible. With

this first example in mind, we now discuss basic quantities of interests and identification

assumptions in the potential outcomes framework.

Zi Di

Ui

Yi

Xi

Figure 1: Benchmark graph. In this graph, Zi is an instrument for the effect of Di on Yi
conditional on Xi, but not unconditionally.

2.2 Basic IV Identification in the Potential Outcomes Framework

Generally, we will discuss the identification of variants of a local average treatment effect

(LATE):

E[Yi(D = 1)− Yi(Di = 0)|Di(Zi = 1) > Di(Zi = 0), Xi]

Here Yi(D = d) is the potential outcome of Y in unit i when Di is set to d, and Di(Zi = z)

is the potential outcome of D in unit i when Zi is set to z. Therefore, this expression defines

the average causal effect of a binary treatment Di on outcome Yi among those individuals 1)

for which an instrument Zi changes treatment status (compliers) and 2) which are character-

ized by covariate profile Xi. Throughout this paper, we assume that there are no spillovers,

i.e., the treatment or instrument of one unit does not affect other unit’s variables.

What if treatment is continuous, as is the case in our two application studies? First write

the causal effect of instrument on treatment as Di(Z = 1) −Di(Z = 0) = αi. If the causal

(“structural”) equation of interest has heterogeneous effects, but otherwise is linear, as in

Yi = µY + βiDi + εi,

then the parameter of interest is usually (e.g., Angrist and Pischke (2009, 186–187))
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E[αiβi]

E[αi]
= E

[
αi

E[αi]
βi

]
. (1)

Here,
αi

E[αi]
can be understood as individual-level weights of the treatment effects βi.

Conventionally, three assumptions are used to identify such treatment effects. These

are often discussed for the case of binary instrument and treatment, although they easily

generalize. The first assumption, monotonicity, assumes that

P (Di(Zi = 1) ≥ Di(Zi = 0)) = 1.

That is, the instrument has a causal effect on the treatment that pushes every unit in

the same direction, and there are no “defiers”. If this holds, αi ≥ 0 so that the expression

in equation 1 is a weighted average of individual-treatment effects βi, where the weights are

all greater than or equal to zero.

Secondly, it is assumed that Zi and Di are dependent (“relevance”):

E[Di|Zi = 1, Xi]− E[Di|Zi = 0, Xi] 6= 0

, which is directly testable. In this paper, we will focus on understanding the crucial condi-

tional independence assumption (CIA)

Yi(Di = d), Di(Zi = z)⊥⊥Zi|Xi

In words, this assumptions states that the potential outcome of outcome Yi when treatment

Di is set to d and the potential outcome of Di when instrument Zi is set to z are jointly

independent from Zi, given covariates Xi.

If these assumptions - CIA, monotonicity, and relevance - hold, two-stage least squares

with saturated models in both stages estimates a weighted average of Xi-specific LATEs, and

this or linear unsaturated models are dominant in applied research (Angrist and Imbens 1995;
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Angrist and Pischke 2009, 177). Notably, the CIA subsumes both the exclusion restriction

and the more opaque “ignorability” requirement. We use graphs to illustrate when this

latter assumption hold, and will usually discuss the “causal first-stage” assumption Di(Z =

z)⊥⊥Zi|Xi separately from the Yi(Di = d)⊥⊥Zi|Xi requirement, since this is more intuitive.

Formal derivations of the joint independence and other proofs are in Appendix C.

2.3 Identification with Pre-Instrument Covariates

We start with Figure 1 as a benchmark graph. In this graph, the treatment and outcome are

driven by unobserved confounders Ui, while there are also observed confounders Xi that may

influence the instrument, treatment, and outcome. A first important insight is that this will

not be the case when Zi is physically and unconditionally randomized, because this precludes

the Xi → Zi path. However, if there are such observed confounders, adjustment for them is

necessary. Intuitively, a first-stage regression of Di on Zi only would not give the causal effect

of Zi on Di because of the open “back-door” paths Zi ← Xi → Di and Zi ← Xi ← Ui → Di.

Similarly, the instrument and the outcome would be connected through a path other than

the effect going through Di. Conditioning on Xi solves both problems, because Xi “blocks”

these spurious paths.

Here, the CIA would not hold if at least one of two key conditions are violated. First, it

may be that the confounders Ui also influence the instrument Zi. In this case, Zi and Ui are

dependent, and conditioning on Xi does not break this dependence. This is the problem of

“back-door paths” which has found extensive treatment in the graphical literature (Shpitser,

VanderWeele and Robins 2010).

Second, Zi may have an effect on Yi going not through Di, which violates the “exclusion

restriction”. In this case, one can think of the potential outcomes as being determined by

the equation (see Appendix B)

Yi(Di = d) = fy(d, Zi, Xi, Ui)
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which clearly depends on Zi, so that the CIA is violated.

In the following, we will assume that observed pre-instrument covariates Xi may exist,

and that conditioning on them solves the “back-door” problem. Specifically, this will even

hold if Ui influences Xi (so that the effects of variables in Xi are not identified). This relaxes

the common restriction for all Xi variables to be “exogenous” (e.g. Wooldridge 2010, 110),

and differentiates such control variables from the post-instrument variables we discuss next.

For ease of visual presentation, we will not depict the Xi nodes in the causal graphs that we

discuss in the remainder of this article.

2.4 Identification with Post-Instrument Covariates

We now discuss a variety of situations in which researchers measure covariates Mi that are

influenced by the instrument, that influence the outcome, and that may also influence or

be influenced by the treatment.3 Our main result is that identification of a local average

treatment effect is possible in some cases under strong assumptions. It turns out that

identification relies on adjustment for the Mi covariates, even if they also influence the

treatment. For the latter case, we introduce a new causal estimand and show how it is

identified. Accordingly, “post-instrument” bias does not generally occur but depends on the

causal model. Additionally, ruling out causation between Di and Mi allows for a test of the

identification assumptions which is easy to implement. We discuss other, informal tests in

the literature and show that these are generally misleading.

In the Vietnam draft example, a potential Mi variable is college education, because the

latter may have been used to avoid the draft, and because it plausibly affects earnings. The

textbook by Wooldridge (2010, 938) discusses this complication and claims that statistical

adjustment for such a variable Mi “effectively solves this problem”. In the following, we

3Our results only hold for acyclic graphs. This means that researchers need to rule out

mutual causality between variables a priori.
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show that this statement needs considerable qualification.

Zi Di

Ui

Yi

Mi

(a)

Zi Di

Ui

Yi

Mi

(b)

Zi Di

Ui

Yi

Mi

(c)

Figure 2: Boxes indicate the conditioning on Mi and bi-directed arrows indicate dependencies
created by such conditioning. In graph (a), conditioning on Mi is required and identifies a
local effect of Di on Yi. In graph (b), IV identification is not possible and conditioning on
the collider Mi opens a non-causal path between Ui and Zi. In graph (c), IV identification
is possible when not conditioning on Mi. Mi is a descendant of collider Di and conditioning
on it creates a dependence between Zi and Ui

The most simple case is shown in graph (a) in Figure 2, where the variable Mi is influenced

by the instrument Zi and in turn is a cause of Yi. However, neither does Di drive Mi, nor

does Mi influence Di, nor is Ui influencing Mi. Can we then simply control for the “post-

instrument” variable Mi to make the instrumental variable approach work?

It turns out that under the restrictive assumptions visualized in graph (a), this condi-

tioning strategy indeed identifies an (Xi,Mi)-specific LATE or weighted ATE as in equation
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1, since the CIA holds with conditioning set (Xi,Mi). To see why, consider the first-stage

effect of Zi on Di. Although Mi is “post-instrument” - i.e., influenced by Zi - conditioning

on it does not invalidate the ignorability of Zi with regards to Di, i.e. Di(Zi = z)⊥⊥Zi|Xi,Mi

holds. Intuitively, there is no “back-door” path from Zi to Di not blocked by Xi, and con-

ditioning on Mi does not block any genuinely causal paths, nor does it open up any new

spurious paths, since it is not a “collider”. In a similar vein, the potential outcome Yi(Di = d)

is now determined by Mi, Xi, Ui as

Yi(Di = d) = fy(d,Mi, Xi, Ui),

and is independent from Zi conditional on Mi and Xi. This is because the direct path

through Mi is blocked while no other paths are opened up.4

There are two crucial assumptions for the validity of this approach that may be violated.

First, it may be that Mi is also driven by the unobserved confounder Ui. This situation is

depicted in graph (b) of Figure 2. In our running example, it is quite easy to imagine that

unobserved parental SES positively influences the choice to go to college directly. In this

case, Mi becomes a “collider”, and conditioning on it (indicated by the box around it) opens

up an unblockable path (indicated by the dashed by-directed arrow) between Zi and Ui.

Specifically, in the “reduced-form” part of the two-stage least squares regression, we

would compare draftees (Zi = 1) to non-draftees (Zi = 0), given the same college decision

Mi = m. If Zi affects the college decision, then the fact that the latter is observed to be

constant in such a group must be due to individual differences in Ui, which then affect Yi

irrespective of an actual treatment effect. E.g., draftees that did not attend college to avoid

the draft probably had lower parental SES than non-draftees, and lower wages Yi for that

reason alone - even if neither treatment nor college affected earnings.

This open “non-causal” path then actually invalidates both the first-stage Di(Zi =

4See Appendices B and C for a more detailed explanation of this formal argument.
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z)⊥⊥Zi|Xi,Mi assumption due to post-treatment selection bias,5 as well as the Yi(Di =

d)⊥⊥Zi|Xi,Mi assumption.

Second, even if Zi does not directly drive Mi, the latter may be influenced by the treat-

ment Di, as in graph (c) of Figure 2. In this case, Mi is a mediator of the Di → Yi

relationship, and is also influenced by Zi indirectly through Di. Wooldridge (2010, 95) sug-

gests that on-the-job training might be such a variable in the Vietnam draft application.

In this case, Zi is a valid instrument when one does not adjust for Mi. This is because

the exclusion restriction obviously holds, and there are also no other back-door paths which

connect Zi and Yi. However, adjusting for Mi introduces a severe, but more subtle problem.

D-separation—explained in more detail in Appendix B—does not only prohibit to condition

on “colliders” to block paths, but also to condition on descendants of such variables. Since

Zi and Ui collide in Di, conditioning on its “child” Mi has the same qualitative consequences

as in graph (b), making it impossible to identify the ATE of Zi on Di or the LATE of Di on

Yi. In the “reduced-form” regression of Yi on Zi controlling for Mi, we would again compare

individuals with different values for Zi, but the same Mi. Then, observed differences in Yi

may be due to differences in unobserved Ui that are mediated through Di, and not due to a

causal effect of Di.

This subtle problem went unnoticed by Deuchert and Huber (2017, 416), who discuss

a similar graph and state that conditioning on a mediator satisfies the CIA and identifies

a “partial direct effect”. As we hope we have made clear, this is not the case, because

conditioning on a mediator renders Zi correlated with Ui, which prohibits any identification.6

We return to these graphs again when we discuss the possibility of testing which of the

assumptions hold.

5For an in-depth analysis of this phenomenon in standard adjustment strategies in polit-

ical science, see Montgomery, Nyhan and Torres (2018).

6Frölich and Huber (2017) propose to identify mediation effects in such a setting using

an instrument influencing Di and a separate instrument influencing Mi.
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An interesting special case of graph (c) of Figure 2 is when Mi stands for the inclusion

of an observation in the dataset (or, reversely, for attrition). In both observational and

experimental studies, participants often drop out based on the realization of their treatment

or their data is selectively reported due to administrative reasons (Aronow, Baron and Pinson

2019; Elwert and Winship 2014; Knox, Lowe and Mummolo 2020). Researchers are then

forced to condition on Mi. In IV settings, even if Mi is not directly driven by Ui and does

not influence Yi, it is a descendant of the collider Di, so that the instrumental variable

becomes invalid. Similarly, in Angrist (1990), it is noted that reported earnings are censored

at a maximum l, so that the whole sample is conditional on Y ≤ l. This means one

conditions on a descendant of the true unobserved earnings so that the IV becomes invalid,

a fact acknowledged by Angrist (1990, 334). Berinsky and Chatfield (2015) discuss this and

related selection problems that may occur for the draft lottery instrument.7

A final possible set of causal assumptions is depicted in graph 3. In this graph, Mi is not

influenced by the confounder Ui, but affects Di. Again, the no-confounding assumption is

crucial. If it is violated, a collider phenomenon would occur as in the previous cases, making

Zi an invalid instrument. However, if such confounding can be ruled out, one can identify a

local ATE:

E[Yi(Di = 1)− Yi(Di = 0)|Di(Zi = 1,Mi = m) > Di(Zi = 0,Mi = m), Xi]

This estimand has not been discussed before. It is the average causal effect of a binary treat-

ment for the latent subpopulation of units which 1) change treatment status as a response

to the instrument Zi, while fixing Mi at m and 2) which are characterized by covariates Xi.
8

7See Elwert and Segarra (2022) for an analysis of this problem under a linearity assump-

tion.

8Blackwell (2017) discusses related quantities where Mi would be a second randomized

instrument that does not affect Yi directly.
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Zi Di

Ui

Yi

Mi

Figure 3: Graph where adjustment for Mi is necessary to identify a local average treatment
effect.

The intuition behind this identification result is that under the assumptions in graph

3, one can actually identify the joint (“controlled direct”) effect of Zi and Mi on Di. For

those individuals that shift their treatment uptake as a result of this hypothetical joint

intervention, the effect of Di on Yi is then also identified. There are additional relevance and

monotonicity assumptions needed, which are very similar to the usual LATE assumptions.

We discuss these in more detail in Appendices C and D.5.

We summarize all of these identification results in the following proposition:

Proposition Under the assumptions in graph (a) of Figure 2, the CIA

Di(Zi = z), Yi(Di = d)⊥⊥Zi|Xi,Mi

holds and under the usual monotonicity and relevance assumption, the LATE estimand

E[Yi(Di = 1)− Yi(Di = 0)|Di(Zi = 1) > Di(Zi = 0), Xi,Mi]

is identified.

Under the assumptions depicted in graphs (b) of Figure 2, the CIA does not hold with

any conditioning set.

Under the assumptions depicted in graphs (c) of Figure 2, the CIA does hold conditional

on Xi, but not conditional on Mi.
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Under the assumptions depicted in Figure 3, the CIA

Di(Zi = z,Mi = m), Yi(Di = d)⊥⊥Zi|Xi,Mi

holds. If additionally P (Di(Zi = 1,Mi = m) ≥ Di(Zi = 0,Mi = m)|Xi) = 1 (“partial”

monotonicity) and E[Di|Zi = 1,Mi = m,Xi] − E[Di|Zi = 0,Mi = m,Xi] 6= 0 (relevance)

hold, the LATE estimand

E[Yi(Di = 1)− Yi(Di = 0)|Di(Zi = 1,Mi = m) > Di(Zi = 0,Mi = m), Xi]

is identified.

Proof: See Appendix C.

2.5 Judging and Testing the Causal Assumptions

In sum, what are the implications of these results for applied researchers if they suspect that

Zi influences Mi? We emphasize that only the restrictive sets of assumptions in Figure 2 (a)

and Figure 3 allow for IV identification by conditioning on Xi and Mi. Again, if researchers

think that the instrument may influence Yi through variables Mi, they need to rule out

confounders that may affect Mi and Yi either directly or through Di. We also emphasize

that researchers must not condition on mediators of the Di → Yi relationship. This causes

inconsistencies even when instruments are unconditionally valid. We now return to some of

the empirical applications that motivated our research and focus on the validity of various

robustness tests.

In general, robustness tests rely on determining “core” and additional control variables

such that 1) identification holds with core controls, but also with additional controls and 2)

there must be a chance that the robustness test fails if the assumptions are incorrect (Chen

and Pearl 2015; White and Lu 2011). Regarding condition 1), if one knew that one of the
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sets is incorrect a priori, then there would be no point in testing, as one would have to stick

to the other, correct set of controls anyways. If one allows for the fact that the IV impacts

on Yi directly over Mi, then either the instrument is completely invalid – but one can engage

in a sensitivity analysis, as shown below –, or one needs to adjust for Mi.

For example, Wucherpfennig, Hunziker and Cederman (2016) acknowledge the possibility

of various post-instrument variables, and try to mitigate such concerns by adjusting for these

as a robustness test. They report that estimates under either adjustment set are similar. Such

a strategy is also undertaken by Kern and Hainmueller (2009) and Spenkuch and Tillmann

(2018). It turns out that this testing strategy is misleading. To see why, consider first graph

(a) in Figure 2. In this situation, Mi-adjusted IV estimation identifies a LATE, whereas

unadjusted estimates will be different and will exhibit asymptotic bias. In situations like

graph (b) in Figure 2, Zi is not a valid instrument under either adjustment, and there is no

way to empirically test this graph. In graph (c), Mi-adjusted IV estimates will differ, just like

in graph (a), but now the unadjusted estimator converges to a LATE, whereas the adjusted

estimates are biased. Accordingly, researchers cannot circumvent to commit themselves to

causal assumptions a priori in situations like these. Comparing adjusted and unadjusted

estimates is, in general, misleading: Both equal and unequal estimates may come from a

real-world process where the variable Zi is a valid instrument unconditionally, conditional

on Mi, or in neither case.

A second approach is to inspect the correlation between Zi and Mi. Researchers often

report that this association is not significant and that the instrument is therefore uncon-

ditionally valid. But when one acknowledges the possibility of a non-zero effect of Zi on

Mi, the null hypothesis to be tested should be a composite null of there being an effect

(Rainey 2014; Hartman and Hidalgo 2018). Additionally, the bias introduced through post-

instrument variables increases as the instrument becomes weaker (as discussed below), which

such tests do not address. Additionally, even small effects of Zi on Mi may be relevant when

the effect of Mi on Yi is large. Our sensitivity analysis can be seen as an alternative approach
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to such a testing strategy because it incorporates the statistical uncertainty associated with

the estimate of the effect of Zi on Mi. This is the price researchers have to pay when they

are not willing to definitely assume a zero effect.

One situation in which causal assumptions we have proposed are sharp enough that they

allow a test is graph (a) of Figure 2. In this graph, Di and Mi are connected via the Di ←

Z →Mi path, and additional blocked paths running over the collider Yi. Accordingly, Zi (and

Xi, as usual) d-separate Di and Mi, and these two variables should therefore be conditionally

independent in the population. This can be tested by estimating E[Di|Mi, Zi, Xi] as a

function of Mi, which is simply the first-stage that is often reported by researchers. However,

the focus normally rests on the partial association between the instrument Zi and Di (for

testing whether the instrument is weak), while the test we propose rests on the partial

association between the post-instrument variable Mi and Di. Specifically, graph (a) of Figure

2 suggests that the coefficient of a linear regression of Di on Mi, controlling for Zi and

Xi, is zero (assuming correct regression specification and standard errors). If researchers

commit to this graph, they should use an equivalence test in order to provide evidence for

this zero association (Hartman and Hidalgo 2018), for example by determining whether the

90% confidence interval lies entirely within a range of associations that are negligible (at

α = 0.05). This test (which will we call the “diagnostic test”) may seem counter-intuitive

at first glance because it does not directly check for associations between the instrument

and other variables. However, it is the only test that can be justified by relatively weak

assumptions. We note that tests for ignorability of the treatment using proxies of unobserved

confounders take a similar indirect route (White and Chalak 2010).

What if the diagnostic test fails, i.e., one cannot reject the null of dependence? In this

case, at least one open path between Di and Mi must exist, like in graphs (b) and (c) of

Figure 2, or as in Figure 3. Accordingly, researchers should consider a priori which of these

paths may exist.
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3 A New Sensitivity Analysis

We have shown that instruments for a causal effect may not be valid when they affect

other variables that affect the outcome of interest and are also driven by unobserved con-

founders. Specifically, conditioning on these other variables Mi oftentimes will not achieve

identification. In this section, we propose a new semi-parametric sensitivity analysis for such

situations. Our approach is based on the fact that we can often assess the effect of the in-

strument on the Mi variable, which provides useful information to bound the bias introduced

by the direct effect of the instrument. This goes beyond other approaches (Conley, Hansen

and Rossi 2012; Van Kippersluis and Rietveld 2018; Cinelli and Hazlett 2022) that cannot

use information on post-instrument covariates. An interesting corollary of our approach is

that for at least some choices of the sensitivity parameters, estimates are guaranteed to be-

come more robust (i.e., move further away from zero into the direction of the original point

estimate). Furthermore, we relax parametric assumptions (e.g., constant effects) that are

often made in the literature. We present two different models with different assumptions

that nonetheless lead to similar estimation approaches: First, a model for situations where

instrument, treatment, and post-instrument variable are binary. Then, there is only one

sensitivity parameter. Second, a model for a binary instrument, but possibly continuous

treatment and post-instrument variable. Then, there are two sensitivity parameters.

3.1 Model 1: Binary Variables

When Zi, Di, and Mi are all binary, one can perform sensitivity analysis under relatively

weak parametric restrictions. The resulting estimation approach is a special case of our

second approach described in the next section and serves as a useful starting point.

Our model for Yi looks as follows:

Yi = µY + βiDi + γiMi + λ
′

1iXi + ε1i. (2)

18



In this model, all causal effects vary across individuals in a fairly unrestricted fashion,

and so are random variables (see Imai and Yamamoto (2013) for a similar setup). Xi is a

vector of controls. We assume E[ε1i] = 0 without loss of generality. In Appendix D, we

show that when Di and Mi are binary and further exogeneity and monotonicity assumptions

discussed below hold, the standard LATE conditional on Xi can be expressed as

E[Yi|Zi = 1, Xi]− E[Yi|Zi = 0, Xi]

E[Di|Zi = 1, Xi]− E[Di|Z = 0, Xi]
−

E[γi|Mi(Zi = 1) > Mi(Zi = 0)]× E[Mi|Zi = 1, Xi]− E[Mi|Z = 0, Xi]

E[Di|Zi = 1, Xi]− E[Di|Z = 0, Xi]
.

(3)

In this expression, the first term can be estimated by a standard two-stage least squares

regression that completely ignores Mi, with outcome Yi, treatment Di, instrument Zi, and

controls Xi. The second term is the asymptotic bias introduced by direct effects of the

instrument through Mi. It consists of the average causal effect of Mi on Yi (γi) for units for

which Zi has an effect on Mi. This is the unknown sensitivity parameter. It is multiplied by a

term that can be estimated via another standard two-stage least squares regression, but now

with outcome Mi. Here, the numerator equals the average effect of Zi on Mi, which (under

monotonicity) is equal to the share of units for which Zi has an effect on Mi. The larger

this effect, the larger the bias. The denominator is the first-stage of the main regression

and equals the share of units for which the instrument has an effect on the treatment. The

smaller this quantity, the weaker the instrument is for Di, and the larger the bias through

direct effects is.

An important insight from this bias decomposition is that the association between Zi and

Mi may be small, but the bias nonetheless large if the instrument is weakly associated with

Di. This is on top of other problems associated with weak instruments which occur in finite

samples (Bound, Jaeger and Baker 1995). However, it is also clear that if one chooses the

sign of the sensitivity parameter such that the bias term is of the opposite sign as the first
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term (the naive estimate), the resulting estimate will actually be in the same direction and

larger than the naive estimate. Accordingly, by incorporating sample information, original

estimates may become more robust for some choices of the sensitivity parameter.

While the causal model for Yi in equation 2 restricts interactions between the observed

variables, we make no assumption on the causal models for Di and Mi, except that the

effect of Zi is “monotone” in both.9 Therefore, this approach is quite general, although with

continuous X modeling will be necessary.

3.2 Model 2: Binary IV, Continuous Treatment and Post-Instrument

Variable

Many applications (including our two empirical analyses further below) deal with continuous

Di or Mi, in which the previous bias decomposition is not valid. Here, one must instead

make further assumptions on the causal models for Di and Mi. Consistent with our model

for Yi, we assume that

Di = µD + αiZi + πiMi + λ
′

2iXi + ε2i (4)

Mi = µM + δiZi + λ
′

3iXi + ε3i. (5)

Importantly, the causal model defined by all three equations is consistent with graphs

9One could in fact allow for interactions between Di and Mi in the model in equation

2. The interaction term would be a second sensitivity parameter that is multiplied with the

estimable share of “joint compliers”, P (Di(Zi = 1)Mi(Zi = 1) > Di(Zi = 0)Mi(Zi = 0)).

See Blackwell (2017) for related estimation strategies when there are two IVs. Since applied

researchers using IV regressions rarely specify interactions between treatment and covariates

and allowing for them in our second sensitivity model increases complexity even more, we

do not pursue this here.
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(a) and (b) graphs in Figure 2 and additionally allows for Mi to affect Di.
10

We make a series of further assumptions which are enumerated in Appendix D. We here

give an intuitive summary. The first assumption follows from graphs (a) and (b) in Figure

2. It requires that there are no unblocked back-door paths from Zi to any of Di,Mi, Yi, and

that there is no direct effect of Zi on Yi save for the effects through Di and Mi. The second

assumption states that Zi affects Di monotonically, which again is a standard assumption.

The third assumption requires Zi to also affect Mi monotonically. Both monotonicity as-

sumptions restrict πi, so that in most situations arguments for one of these to be plausible

also make the other plausible. However, they are logically independent (we expand on this

in Appendix D.5). Finally, for our second sensitivity model, we assume that the covariance

of the potential outcomes M(0),M(1) is non-negative. This assumption allows us to use the

data to bound a parameter and effectively decreases the width (but not the midpoint) of the

resulting bounds. If analysts are not willing to impose this assumption and they find a large

mean effect of Zi on Mi, we suggest that they allow for larger values of the second sensitivity

parameter σγi than is otherwise plausible. We discuss this in more detail in Appendix D.4.

Under these assumptions, we show in Appendix D that one can bound the weighted

causal effect of Di on Yi, E

[
αi + δiπi

E[αi + δiπi]
βi

]
. The bias term becomes

E[δiγi] = E[δi]E[γi] + cov(δi, γi). (6)

Here, E[δi] is the average causal effect of Z on M (equal to the share of Mi-compliers),

which can be estimated from the data. E[γi] is the direct effect of M on Y , which is the first

sensitivity parameter.11 If treatment effects were constant, it would be the only unknown.

10In graph (c), a sensitivity analysis would only be necessary if Zi affected Mi directly.

However, βi would then no longer describe the total effect of Di, which is of primary interest

in most analyses.

11To connect this to the first sensitivity model, note that with Mi continuous, δi is con-
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However, if treatment effects vary and unobserved confounders impact on both M and Y , the

individual-level effects δi and γi will be correlated, and the covariance term will be different

from zero (Glynn 2012).

For example, in the Vietnam draft study, if unobserved parental SES Ui influences the

decision to attend college (Mi) as well as later wages (Yi), it is plausible that lower parental

SES makes both effects in question larger, and thereby creates a positive covariance between

them. For example, for men with low parental SES, the effect of the draft on attending

college (δi) will be relatively large (because they are more likely to be at the margin when

it comes to deciding for or against college, Card 1999). And we would expect the effect

of college on earnings (γi) in this group also to be relatively large because it has a higher

potential to benefit (Brand and Xie 2010). Accordingly, cov(δi, γi) would be positive. Taken

together, this could lead to large bias, even if the constituent average causal effects are small.

Previous approaches to sensitivity analysis (Conley, Hansen and Rossi 2012; Van Kippersluis

and Rietveld 2018) assume that all causal effects are constants and therefore cannot address

biases that arise from such scenarios.

We show in Appendix D that one can use the data to bound this covariance term.

Intuitively, the bounds increase when the standard deviation of M and the effect of Z on

M ’s standard deviation gets larger. The second sensitivity parameter then is the standard

deviation of γi, σγi . This quantity is in the same units as E[γi], and describes how much γi

typically varies.

Finally, we can extend this sensitivity model to situations where the post-instrument

variable M may be measured with error. We discuss this in Appendix D.

tinuous as well so that P (δi = 0) = 0, and, due to monotonicity, E[γi] = E[γi|δi > 0].
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3.3 Choosing Values for the Sensitivity Parameters

To reiterate, the first sensitivity parameter E[γi] describes the direct effect of Mi on Yi, fixing

Di. We suggest that researchers reason about the sign and size of this parameter based on

the literature studying the effect of the Mi on the Yi variable, and we illustrate this in our

applications below. Researchers should always inspect a range of values for this (and also

the second) sensitivity parameter.

The second sensitivity parameter, σγi , is the standard deviation of γi. This parameter

therefore describes the spread of the unit-specific effects of Mi on Yi that the first sensitivity

parameters averages.12 That is, this parameter measures effect heterogeneity. σγi is non-

negative and increasing it does not change the mean effect estimate, but rather increases the

uncertainty around it symmetrically, i.e., it effectively widens the confidence interval.

This parameter is usually not identified in empirical studies. However, existing empirical

studies may be informative insofar as they document effect heterogeneity. For example, if a

study reports the effects of Mi on Yi to vary in a substantively meaningful way as a function of

another covariate, then this suggests that σγi is relatively large, although it is not possible to

specify this quantitatively. We therefore suggest to inspect the existing literature for evidence

of effect heterogeneity. To get a better quantitative sense of this sensitivity parameter, one

can depart from the range the researcher specifies for the first sensitivity parameter (which

similarly can be informed by prior literature). If one assumes that these also represent the

minimum and maximum values for unit-specific causal effects and one further assumes a

certain shape for the distribution of these effects (e.g., uniform or Beta), then this yields a

specific value for σγi . We discuss this issue, including its implementation in our R package,

in more detail in Appendix D.3.

Quantitative robustness analysis does generally not yield clear qualitative answers on the

12The sensivitiy analysis developed by Imai and Yamamoto (2013) contains a similar

parameter.
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(non-)robustness of a finding, but rather invites researchers to reason about robustness as a

continuous concept. As such, researchers should not blindly insert any default values for the

sensitivity parameters, but rather choose them as to change their main inference and then

discuss, given substantive judgment and information from the prior literature as discussed

above, whether such values for the sensitivity parameters are plausible. We illustrate this

below.

3.4 Multiple Post-Instrument Covariates

In some situations, there may be a worry that there are in fact multiple potential post-

instrument Mi variables. We analyze this formally in Appendix E. It turns out that if one

is willing to assume that the different post-instrument variables do not causally influence

each other, our sensitivity analysis can be extended relatively easily, in that one can use

sample information to bound estimates and each post-instrument variable is associated with

two sensitivity parameters, analogous to the single-variable case. However, such a causal

independence assumption is very strong and untestable given the discussed assumptions.

It seems unlikely that there ever could be cases where one would be unwilling to rule out

direct effects of the candidate instrument, yet would be willing to assume that these run over

measured variables that happen not to influence each other. If one does not impose such

an assumption, the analysis becomes practically intractable, as the number of sensitivity

parameters increases very fast.13 We suggest that a candidate instrument that plausibly has

multiple direct effects is generally not suitable for our sensitivity analysis that incorporates

measured Mi variables. Instead, researchers need to resort to the sensitivity analyses by

Conley, Hansen and Rossi (2012) or Cinelli and Hazlett (2022) that do not incorporate

post-instrument variables, or abandon an IV strategy altogether.

13E.g., with just two post-instrument covariates, there are seven sensitivity parameters.
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4 An Illustration of the Proposed Methodology

We illustrate our new sensitivity analysis using data from Spenkuch and Tillmann (2018) as

well as from Carnegie and Marinov (2017). In the case of Spenkuch and Tillmann (2018),

we find that their original estimate is very robust to large values on the first sensitivity

parameter as well as to all but implausibly large values of the second. In the case of Carnegie

and Marinov (2017), we find a more nuanced picture: While their estimate is nominally not

very robust against negative effects of Mi on Yi, it actually increases in size and significance

for substantively more plausible positive effects. Then, it is also robust to some heterogeneity

in these effects.

4.1 The Effect of Religious Composition on Support for National

Socialists

In Spenkuch and Tillmann (2018), one aim is to estimate the effect of Catholicism on the

vote share of the national socialists (NSDAP) in Germany in 1932. The data used is on the

county-level and comprises official election results and census data on the share of Catholics,

protestants, and other religions, as well as extensive socio-economic information like un-

employment rates in various demographic subgroups. Since the authors cannot rule out

unobserved confounders between religious composition and the Nazi vote share, they sug-

gest using the religious denomination (Catholic versus Lutheran or Calvinist) of a county’s

past ruler, measured in 1624, as an instrument. They discuss evidence that the historical

county denomination was largely idiosyncratic, except for a few observable factors Xi for

which they adjust in their statistical analysis.

Spenkuch and Tillmann (2018, p. 9) then further assert that for this variable to be a

valid instrument, “it may influence voters’ decisions to support the NSDAP only through its

impact on covariates that are included in the regression”. We take this as an indication that

past religious composition Zi may have affected, for example, the economic situation in coun-
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ties in the 1930s, which we conceptualize as Mi variables. Furthermore, it is plausible that

such economic variables also exerted a strong influence on the Nazi vote share. Accordingly,

the instrument would be valid if we faced the situation of graph (a) in Figure 2. Assuming

the IV is valid, Spenkuch and Tillmann (2018) estimate that a one percentage point increase

in the share of Catholics decreased the NSDAP vote share by about 0.27 percentage points.

This estimate is very large and precise (the standard error is about 0.03).

From this alone, it is clear that only strong deviations from the IV assumption can

change the substantive conclusions. We concentrate on one single Mi variable measuring a

highly relevant economic fundamental: The county-level unemployment rate among blue-

collar workers. For illustrative purposes, we implement our diagnostic test. The resulting

90% confidence interval is [0.27, 0.62], indicating a substantial association of the unemploy-

ment rate with Catholicism. One would therefore not be able to reject the null of a mean-

ingful association and therefore the strong assumptions in graph (a) in Figure 2 would seem

suspect.

Figure 4 plots our sensitivity analysis for the causal effect of Catholicism on NSDAP

vote. The X-axis depicts the first sensitivity parameter, the mean effect of unemployment

on the NSDAP vote share. The Y-axis depicts the effect estimate. The thick solid line is

the point estimate, while the thinner solid lines represent 95% confidence intervals whose

width depend on the value of the second sensitivity parameter. It is clear that the inference

is virtually unchanged when one considers different values of the first sensitivity parameter

in the range [−0.5, 0.5]. These represent large effects. Accordingly, the analysis seems very

robust with respect to the first sensitivity parameter.

However, we see that when σγi approaches 1, the confidence interval covers 0, so that

the original inference is not robust. Is such a heterogeneous effect reasonable to expect?

Due to severe data limitations, the empirical literature on Weimar elections focuses on de-

scriptive inferences (King et al. 2008), so that it cannot directly inform our assessment on

the magnitude of σγi . Spenkuch and Tillmann (2018)’s own estimates for mean effects of
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Figure 4: Results from the sensitivity analysis, based on data from Spenkuch and Tillmann
(2018). X-axis depicts first sensitivity parameter E[γi], the average effect of Mi (blue-collar
unemployment) on Yi (county-level NSDAP vote share). Y-axis depicts estimate of effect of
interest of Di (Catholicism) on Yi. Thick solid line represents mean effect estimate. Thin
solid lines represent 95% confidence interval as a function of the second sensitivity parameter
σyi , effect heterogeneity in the effect of Mi on Yi.

unemployment, which they do not claim are causal effects, are negative and at most as large

as the effect of Catholicism (i.e., at most −0.3). The contemporary literature on the causes

of extreme-right voting (Arzheimer 2009) finds positive effects of both individual unemploy-

ment and aggregate unemployment rates. This suggests some variability in effects. However,

we can calculate that even if the effect of unemployment rates would vary uniformly between,

say, −0.75 and 0.5 percentage points across counties, the implied standard deviation would

only be about 0.36. While this introduces some additional uncertainty, the main inference

is robust.

4.2 The Effect of Foreign Aid on Human Rights

In Carnegie and Marinov (2017), the authors exploit the “essentially random” rotation of

the presidency of the Council of the European Union across member states as a variable
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Figure 5: Results from the sensitivity analysis, based on data from Carnegie and Marinov
(2017). X-axis depicts first sensitivity parameter E[γi], the average effect of Mi (economic
openness) on Yi (human rights). Y-axis depicts estimate of effect of interest of Di (foreign
aid) on Yi. Thick solid line represents mean effect estimate. Thin solid lines represent 95%
confidence interval as a function of the second sensitivity parameter σyi , effect heterogeneity
in the effect of Mi on Yi.
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Zi that impacts on foreign aid Di transferred to countries that used to be colonies of that

presiding state. They use this variable as an instrument for aid to address the longstanding

and contested question of whether aid impacts human rights and democratic institutions of

a receiver country (Yi).

The paper carefully adjusts for institutional reforms that can be interpreted as pre-

instrumentXi variables and, since the data set is a panel of countries over years, lags variables

to avoid “posttreatment bias” (Carnegie and Marinov 2017, 680). This can be interpreted

as trying to avoid situations such as in graph (c) in Figure 2. In their main analysis, they do

not adjust for any plausible post-instrument variables and find a very large, but short-lived

effect of foreign aid on a Human Rights index: An increase by $5 million increases the 0-14

index by 0.4 points (95% confidence interval [0.01, 0.8]).

However, in their discussion of the exclusion restriction, Carnegie and Marinov (2017,

A5, Table A18) mention several observed variables that may be influenced by the instrument

and test for their association with the instrument, assuming a null of zero association. As

discussed before, such an approach does not incorporate additional uncertainty and biases

that may occur.

We illustrate our analysis with the “economic openness” variable (defined as the sum of

national export and imports in terms of GDP per capita). Again, for illustrative purposes,

we inspect the diagnostic test that yields the 90% confidence interval [0.02, 0.04]. This

implies that we cannot reject that a one-standard deviation (50 percentage points) increase

in economic openness is associated with an increase in aid by 50× 0.04% = 20%, controlling

for other variables. This again seems substantial and we would therefore reject graph (a) in

Figure 2.

In Figure 5, we plot the sensitivity of their main inference with respect to economic

openness.14 The literature suggests that E[γi] is likely to be positive, but may also be highly

14Note that we are analyzing the original regression coefficient of the logged aid variable

(point estimate approx. 1.9).
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heterogeneous (Hill Jr. and Jones 2014). We see here that while the effect of foreign aid on

human rights becomes insignificant for negative values of E[γi], it actually becomes larger

and more significant for substantively more plausible positive effects of Mi on Yi. This is

true for values of E[γi] up to 0.02, which would correspond to a fairly large effect.In such

situations, the effect is also robust against small heterogeneity in the effect of Mi on Yi (σγi).

Here, the widest confidence intervals correspond to a situation where σγi = 0.002. This

seem rather small. For example, if the effect of Mi on Yi varies uniformly between 0 and

0.04, the induced standard deviation is already about 0.012. In sum, the main inference

becomes actually stronger for plausible values of E[γi], but then is still sensitive to plausible

heterogeneity in γi.

5 Conclusion

Many applied researchers use instrumental variables in settings where they try to “control

away” a direct effect of the instrument on the outcome by adjusting for post-instrument

variables Mi. In this paper, we explained why this strategy only works under restrictive as-

sumptions. Using causal graphs and potential outcomes, we highlighted the asymmetric role

of pre- and post-instrument covariates: While adjustment for the former is often necessary

and unproblematic, statistical control for the latter has to be taken with extreme caution.

We showed that with direct effects of the instrument through Mi, some local average treat-

ment effects may be identified, but we also highlighted various sources of asymptotic bias.

We discussed the limited value of existing robustness tests and provided a more suitable test

of a specific set of identification assumptions. Finally, we introduced a sensitivity analysis as

an alternative and illustrated it using the IV analysis in Spenkuch and Tillmann (2018) and

Carnegie and Marinov (2017). Here, it became clear that researchers need to reason about

both mean direct effects of the instrument as well as their variability.

We conclude by providing a checklist for applied researchers that want to use a (potential)
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instrumental variable that may have a direct effect on the outcome through another variable:

1. Based on substantive knowledge, determine which of the graphs discussed in this paper

seems plausible for your research design. Specifically, be clear about which variables

are confounders Xi that influence Zi, Di, and Yi, and which variables Mi are driven by

Zi or Di.

2. If Mi is a mediator and not directly driven by Zi, proceed with standard estimation

routines like 2SLS, where you condition only on Xi.

3. If your assumptions are equivalent to graph (a) in Figure 2, implement the diagnostic

test by providing evidence that Di and Mi are independent conditional on Zi.

4. If the test does not reject the Null, reconsider your assumptions. Only the assumptions

in Figure 3 allow for conditional dependency between Di and Mi and identification

based on adjustment for Xi and Mi.

5. If prior knowledge or the diagnostic test leads to the conclusion that Zi directly influ-

ences Mi and that the unobserved confounder also influences Mi (as in graph (b) in

Figure 2), identification is not possible. Perform estimation conditional only on Xi and

then use our sensitivity analysis to assess whether substantive conclusions still hold.

Finally, we reiterate a point made, inter alia, by Conley, Hansen and Rossi (2012): A

strong but imperfect instrument may be preferable to an exogenous, but weak instrument.

The strength of an instrument is, of course, estimable. When a central post-instrument vari-

able Mi is measured, our method also allows researchers to better assess the consequences of

imperfections of their instrument, without the need to rely completely on a priori judgments

about exogeneity.
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Frölich, Markus and Martin Huber. 2017. “Direct and indirect treatment effects–causal

chains and mediation analysis with instrumental variables.” Journal of the Royal Statistical

Society: Series B (Statistical Methodology) .

URL: http://dx.doi.org/10.1111/rssb.12232

Glynn, Adam N. 2012. “The product and difference fallacies for indirect effects.” American

Journal of Political Science 56(1):257–269.

Hartman, Erin and F Daniel Hidalgo. 2018. “An equivalence approach to balance and placebo

tests.” American Journal of Political Science 62(4):1000–1013.

Hill Jr., Daniel W and Zachary M Jones. 2014. “An empirical evaluation of explanations for

state repression.” American Political Science Review pp. 661–687.

Imai, Kosuke and In Song Kim. 2019. “When should we use unit fixed effects regression

34



models for causal inference with longitudinal data?” American Journal of Political Science

63(2):467–490.

Imai, Kosuke and Teppei Yamamoto. 2013. “Identification and sensitivity analysis for multi-

ple causal mechanisms: Revisiting evidence from framing experiments.” Political Analysis

21(2):141–171.

Kern, Holger Lutz and Jens Hainmueller. 2009. “Opium for the masses: How foreign media

can stabilize authoritarian regimes.” Political Analysis 17(4):377–399.

King, Gary, Ori Rosen, Martin Tanner and Alexander F Wagner. 2008. “Ordinary economic

voting behavior in the extraordinary election of Adolf Hitler.” The Journal of Economic

History 68(4):951–996.

Knox, Dean, Will Lowe and Jonathan Mummolo. 2020. “Administrative Records Mask

Racially Biased Policing.” American Political Science Review p. 1–19.

Marshall, John. 2016. “Coarsening Bias: How Coarse Treatment Measurement Upwardly

Biases Instrumental Variable Estimates.” Political Analysis 24(2):157–171.

Mellon, Jonathan. 2024. “Rain, rain, go away: 194 potential exclusion-restriction violations

for studies using weather as an instrumental variable.” American Journal of Political

Science .

Montgomery, Jacob M, Brendan Nyhan and Michelle Torres. 2018. “How conditioning on

posttreatment variables can ruin your experiment and what to do about it.” American

Journal of Political Science 62(3):760–775.

Pearl, Judea. 2009. Causality. Cambridge university press.

Rainey, Carlisle. 2014. “Arguing for a negligible effect.” American Journal of Political Science

58(4):1083–1091.

35



Rosenbaum, Paul R. 1984. “The consquences of adjustment for a concomitant variable that

has been affected by the treatment.” Journal of the Royal Statistical Society. Series A

(General) pp. 656–666.

Shpitser, Ilya, Tyler VanderWeele and James M Robins. 2010. On the validity of covariate

adjustment for estimating causal effects. In 26th Conference on Uncertainty in Artificial

Intelligence, UAI 2010. pp. 527–536.

Sovey, Allison J and Donald P Green. 2011. “Instrumental variables estimation in political

science: A readers’ guide.” American Journal of Political Science 55(1):188–200.

Spenkuch, Jörg L and Philipp Tillmann. 2018. “Elite influence? Religion and the electoral

success of the Nazis.” American Journal of Political Science 62(1):19–36.

Van Kippersluis, Hans and Cornelius A Rietveld. 2018. “Pleiotropy-robust Mendelian ran-

domization.” International Journal of Epidemiology 47(4):1279–1288.

White, Halbert and Karim Chalak. 2010. “Testing a conditional form of exogeneity.” Eco-

nomics Letters 109(2):88–90.

White, Halbert and Xun Lu. 2011. “Causal diagrams for treatment effect estimation with

application to efficient covariate selection.” Review of Economics and Statistics 93(4):1453–

1459.

Wooldridge, Jeffrey M. 2010. Econometric analysis of cross section and panel data. MIT

press.

Wucherpfennig, Julian, Philipp Hunziker and Lars-Erik Cederman. 2016. “Who inherits

the state? Colonial rule and postcolonial conflict.” American Journal of Political Science

60(4):882–898.

36



Online Appendix

“Post-Instrument Bias”

Table of Contents

A Papers Using Instrumental Variables (Survey) . . . . . . . . . . . . . . . . . . . . A2

B Causal Graphs and IV Identification Using Potential Outcomes . . . . . . . . . . . . A2

B.1 Deriving Independencies from Causal Graphs. . . . . . . . . . . . . . . . . . . . A3

B.2 From Graphs to Potential Outcomes . . . . . . . . . . . . . . . . . . . . . . . A5

C Proof of the Proposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A6

D Derivation of the Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . A8

D.1 Model 1: Binary Zi,Mi, Di . . . . . . . . . . . . . . . . . . . . . . . . . . . . A8

D.2 Model 2: Binary Zi, Continuous Mi, Di . . . . . . . . . . . . . . . . . . . . . . A10

D.3 Deriving Values for the Second Sensitivity Parameter . . . . . . . . . . . . . . . . A14

D.4 Understanding cov(Mi(1),Mi(0)) > 0 . . . . . . . . . . . . . . . . . . . . . . . A15

D.5 Relationship Between Different Monotonicity Assumptions . . . . . . . . . . . . . . A18

D.6 Implementation & Statistical Inference in the Sensitivity Analysis. . . . . . . . . . . A19

E Multiple Post-Instrument Covariates . . . . . . . . . . . . . . . . . . . . . . . . A20

E.1 Consequences of Causal Dependence of Post-Instrument Covariates . . . . . . . . . . A21

E.2 Sensitivity Analysis under Causal Independence . . . . . . . . . . . . . . . . . . A22

F References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A25

A1



A Papers Using Instrumental Variables (Survey)

Table A1 presents the counts of articles taken from the American Political Science Review, the American

Journal of Political Science, and the Journal of Politics that use instrumental variables in their empirical

analyses for the period from 2010 to the present. For each of the papers found, we have coded whether

there is an explicit discussion regarding the exclusion restriction and among those where there is,

whether there is a covariate being included as a control to satisfy such restriction. The table shows

that 75.12% of the papers discuss the exclusion restriction and 19.02% include a covariate to address

potential violations to this assumption. When dividing the sample into two periods, one starting in

2010 up to 2014 and a second one for papers published in 2015 and after, we see that the percentage of

papers that apply the fix has increased, from 14.1% to 22.05%.

Table A1: Exclusion Restriction and Added Covariates (Counts)

Exclusion restriction Added covariate Total articles

2010-2014 58 11 78
[74.36] [14.10] [100]

2015-2020 96 28 127
[75.59] [22.05] [100]

2010-2020 154 39 205
[75.12] [19.02] [100]

Exclusion restriction denotes the number of articles that explicitly discuss exclusion restric-
tions as identification assumptions in the instrumental variable analysis. Added covariate
denotes articles that include a control variable to address a violation of the exclusion re-
striction. Total articles is the number of articles using instrumental variable techniques.
Percentages are taken over total articles in the period and are in brackets.

B Causal Graphs and IV Identification Using Potential Out-

comes

Causal graphs, specifically directed acyclic graphs, consist of nodes, which visualize variables, and edges,

which are usually directed arrows from one node to another. A path is any consecutive sequence of
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edges. In line with Pearl (2009), we view causal graphs as representations of a nonparametric system

of structural equations that describes cause-effect relationships. That is, nodes represent observable

or unobservable features of units of interest, and an edge or arrow from one such node to the other

communicates the assumption that the one variable causally affects the other variable in the population

of interest. To be precise, a causal model G consists of exogenous background variables Ui, usually

assumed to be unobserved, observed endogenous15 variables Vi, and structural (causal) functions fv for

each endogenous variable. These functions are deterministic in the sense that if we knew all relevant

inputs of fv for an endogenous variable, we could precisely determine the value of this variable. Since Ui

is assumed to be unknown, the observable variables Vi become random variables. Whenever we want to

indicate that observable variables are driven by an unobserved confounder, we will use dashed nodes for

edges emanating from this confounder. This is equivalent to assuming that the “structural errors” Ui

(i.e., all unobserved causes) of the confounded variables are dependent. Throughout, we discuss acyclic

graphs, that is, graphs in which no variable may have an effect on itself. Finally, we use upper-case

letters to denote random variables, and lower-case letters to denote realized or fixed values of these

variables.

B.1 Deriving Independencies from Causal Graphs

To understand in which situations an instrument is (conditionally) valid, it is necessary to derive

independence relationships from the causal graph the researcher assumes. Throughout, we do so by

using an easy yet powerful tool called d-separation (Geiger, Verma and Pearl 1990). In a given graph,

a path p is said to be d-separated (or blocked) by a set of nodes Zi if and only if

1. p contains a chain Xi →Mi → Yi or a fork Xi ←Mi → Yi such that the middle node Mi is in Zi,

or

2. p contains an inverted fork (or collider) Xi →Mi ← Yi such that the middle node Mi is not in Zi

and such that no descendant of Mi is in Zi.

15Here, the word “endogenous” simply means “explained in the model”.
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A set of variables Zi is then said to d-separate Xi from Yi if and only if Zi blocks every path from a

node in Xi to a node in Yi. Importantly, d-separation implies conditional independence, which we write

as Xi⊥⊥Yi|Zi. This means that once we know the value of Zi, Xi does not predict Yi and vice versa. In

addition, we employ graphoid axioms (Dawid 1979) to prove our results.

The fact that conditioning on a collider of two variables (or its descendant) makes these variables

dependent is central to understanding the failure of certain IV strategies, but may be counterintuitive,

so that an example is helpful. Consider two independent binary variables A and B and a random

variable C that is the sum of A and B. Accordingly, C can take on the values {0, 1, 2}, and is a collider

variable, with A and B pointing into it. A and B may be random coin flips, so clearly knowing the value

of A does not help in predicting B. However, conditioning on the collider C means that we are told its

value, for example 1. The question then is whether A and B have become dependent, that is, whether

knowing C and A now tells us anything about B. The answer is a clear yes: Knowing the result C is 1

and, for example, that A is 0, we know for sure that B must be 1. Put differently, knowing the result

of a process (C) and the value of one of its independent inputs (A) also lets us predict the value of the

other input (B). The same mechanics apply if we happen to know the realization of a descendant of C.

For example, let D be a variable that takes on the value 1 when C equals 1, and is 0 otherwise (so that

it is a binary proxy for C). Knowing that D equals 1 and that A equals 0 also leads to the prediction

that B equals 1.

To give a more elaborate example of d-separation, consider Figure 1 in the main text. For the

moment, assume that we could measure Ui and that we were interested in its dependency with Zi . In this

case, one would find four paths between the instrument Zi and Ui: Zi → Di ← Ui, Zi ← Xi → Di ← Ui,

Zi → Di → Yi ← Ui, and Zi ← Xi → Yi ← Ui. The first two paths contain the variable Di as a collider

and so are unconditionally blocked. The last two paths contain Yi as a collider and are therefore blocked

as well. In summary, all paths between Zi and Ui are unconditionally blocked, so that Zi and Ui are d-

separated and Zi⊥⊥Ui holds. Put informally, this conveys the notion that a valid instrument needs to be

independent from unmeasured causes of Yi. Consequently, if one could measure Ui for each individual, a

linear regression of it on Zi should yield a coefficient of zero (asymptotically and under the assumption
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that the regression is correctly specified).

B.2 From Graphs to Potential Outcomes

Having discussed the basic properties of causal graphs, we now introduce potential outcomes and the

causal effects of interests. As usual, the identification assumptions need to be stated in independence

relationships of observed and counterfactual variables. Following Pearl (2009), we connect causal graphs

and potential outcomes by defining the latter quite naturally as solutions to the structural model that

researchers assume. The potential outcome of variables Yi ∈ Vi when variables Xi ∈ Vi are set to x is

denoted Yi(X = x) and is given by Yi(Gx). Gx stands for a manipulated version of the original causal

model G in which all functions fXi
are deleted and replaced by constants x (Pearl 2009, 204).

To give a simple example, consider the graph Di → Yi ← Ui. In this graph, the potential outcome

of Yi in unit i when Di is set to d is

Yi(D = d) = fy(d, Ui)

which, since d is fixed, is a random variable only because it is a function Ui, which stands for all

unobserved causes of Yi. It follows immediately that Di⊥⊥Yi(Di = d) (“ignorability”) holds, because Di

and Ui are d-separated unconditionally (since Yi is a collider that blocks the only path between Di and

Ui). In DAGs, ignorability of the treatment can also be evaluated by simple graphical criteria like the

adjustment criterion (Shpitser, VanderWeele and Robins 2010). However, we resort to this structural

definition of counterfactuals to make explicit the exact reasons for why IV identification may fail, and

because such general graphical criteria for IV problems do not exist.

Our approach is fully compatible with previous results that used counterfactuals to communicate

causal assumptions. Approaches that define potential outcomes as byproducts of structural equation

are also becoming standard in econometrics, see for example Imbens and Newey (2009), Chernozhukov

et al. (2013), and especially White and Lu (2011), who also employ causal graphs. It should also become

clear that potential outcomes are indeed a generalization and refinement of the “structural error” that

plays a central role in econometrics. Again, this error term in a structural or causal equation stands
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for all unobserved factors that influence the outcome when observed determinants are held fixed, and

it should not be confused with the regression error. The latter stands for unit’s deviations in Yi from

its conditional mean.16

C Proof of the Proposition

We first introduce some useful properties of conditional independence:

Lemma 1. (Dawid 1979) If Xi⊥⊥Yi|Zi and Ui is a function of Xi, then 1) Ui⊥⊥Yi|Zi and 2) Xi⊥⊥Yi|Zi, Ui.

Lemma 2. (Contraction, Pearl (2009)) Xi⊥⊥Yi|Zi and Xi⊥⊥Wi|Zi, Yi imply Xi⊥⊥Yi,Wi|Zi.

Lemma 3. Zi⊥⊥Ui|Xi implies Zi⊥⊥f(Ui), g(Ui)|Xi, where f, g are arbitrary functions.

Proof. Zi⊥⊥Ui|Xi implies Zi⊥⊥f(Ui)|Xi as well as Zi⊥⊥Ui|Xi, f(Ui) by lemma 1. The latter then similarly

implies Zi⊥⊥g(Ui)|Xi, f(Ui). By contraction, we then have Zi⊥⊥f(Ui), g(Ui)|Xi.

We can now prove the statements in the main text. Throughout, we will assume there are additional

observed confounders Xi influencing all observed variables.

Proof of the Proposition. In graph (a) of Figure 2, we have Yi(Di = d) = fy(d,Mi, Xi, Ui) and Di(Zi =

z) = fd(z,Xi, Ui). By d-separation, the graph implies Zi⊥⊥Ui|Xi,Mi. By Lemma 3, this implies

Yi(Di = d), Di(Zi = z)⊥⊥Zi|Xi,Mi. Identification of the Xi,Mi-specific LATE then follows as in

Angrist, Imbens and Rubin (1996).

In graph (b) of Figure 2, Yi(Di = d) = fy(d,Mi, Xi, Ui) = fy(d, fm(Zi, Xi, Ui), Xi, Ui), which depends

on Zi. Conditioning on Xi does not block this dependency. Conditioning on Xi,Mi makes Zi and Ui

dependent, so the CIA is generally violated. However, Di(Zi = z) = fd(z,Xi, Ui), and Di⊥⊥Ui|Xi by

d-separation, so Zi⊥⊥Di(Zi = z)|Xi holds and the ATE of Zi on Di is identified.

In graph (c) of Figure 2, Yi(Di = d) = fy(d,Xi, Ui) and Di(Zi = z) = fd(z,Xi, Ui). d-separation

implies Zi⊥⊥Ui|Xi, so by lemma 3, Yi(Di = d), Di(Zi = z)⊥⊥Zi|Xi. However, conditioning on Mi makes

Zi and Ui dependent, because we are conditioning on a descendant of a collider.

16See Imbens (2014) for a discussion of this issue in an IV context.
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In Figure 3, we have

Yi(Di = d), Di(Zi = z,Mi = m)⊥⊥Zi|Xi,Mi

(CIA.2)

First, in this graph, Yi(Di = d) = fy(d,Mi, Xi, Ui) and Di(Zi = z,Mi = m) = fd(z,m,Xi, Ui). By

d-separation, we have Zi⊥⊥Ui|Xi,Mi. Lemma 3 then implies CIA.2. Additionally, we assume

P (Di(Zi = 1,Mi = m) ≥ Di(Zi = 0,Mi = m)) = 1 for all m (partial monotonicity)

E[Di|Zi = 1,Mi = m,Xi]− E[Di|Zi = 0,Mi = m,Xi] 6= 0 for all m (relevance)

Consider the Xi,Mi-adjusted Wald estimator

E[Yi|Zi = 1,Mi = m,Xi]− E[Yi|Zi = 0,Mi = m,Xi]

E[Di|Zi = 1,Mi = m,Xi]− E[Di|Z = 0,Mi = m,Xi]

Under the above assumptions, the numerator evaluates to

E[Yi|Zi = 1,Mi = m,Xi]− E[Yi|Zi = 0,Mi = m,Xi] =

E[(Yi(D = 1)− Yi(D = 0))(Di(Zi = 1,Mi = m)−Di(Zi = 0,Mi = m))|Mi = m,Xi] =

E[Yi(D = 1)− Yi(D = 0)|Di(Zi = 1,Mi = m,Xi) > Di(Zi = 0,Mi = m,Xi)]×

P (Di(Zi = 1,Mi = m) > Di(Zi = 0,Mi = m)|Xi).

The first step follows from

E[Yi|Zi = z,Mi = m,Xi] =

E[Yi(Di = 0) + (Yi(D = 1)− Yi(D = 0))Di(Zi = z,Mi = m)|Zi = z,Mi = m,Xi],

for z = 0, 1 and CIA.2. The second uses the fact that Di(Zi = 1,Mi = m)−Di(Zi = 0,Mi = m) is

either one or zero by partial monotonicity.
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The denominator is

E[Di(Zi = 1,Mi = m)|Mi = m,Xi]− E[Di(Zi = 0,Mi = m)|Mi = m,Xi] =

P (Di(Zi = 1,Mi = m) > Di(Zi = 0,Mi = m)|Mi = m,Xi)

The first step follows from consistency and CIA.2, and the second step follows from partial monotonicity.

Accordingly, the Wald estimator evaluates to

E[Yi(D = 1)− Yi(D = 0)|Di(Zi = 1,Mi = m) > Di(Zi = 0,Mi = m)|Xi].

D Derivation of the Sensitivity Analysis

The structural models in equations 2–5 suggest estimation of all regression functions using linear models

where the control variables Xi enter separately. Therefore, we leave the conditioning on Xi implicit

in the following; all variables can be thought of as having partialled out their correlation with Xi.

Consistent with this, we also assume that our sensitivity parameters are independent from Xi (see

Knox, Lowe and Mummolo (2020, p. 11) for a similar approach).

Sensitivity model 1, in contrast to model 2, implies no assumptions on the functional form of

E[Di|Zi, Xi] and E[Mi|Zi, Xi]. Then, two-stage least squares regression nonetheless is robust (at least

if the true values of the sensitivity parameter were known) (Vansteelandt and Didelez 2018, Proposition

3).

D.1 Model 1: Binary Zi,Mi, Di

In addition to the model in equation 2, we here assume
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Zi⊥⊥Yi(d,m), Di(z),Mi(z) for all z, d,m (7)

P (Di(Zi = 1) ≥ Di(Zi = 0)) = 1 (8)

P (Mi(Zi = 1) ≥Mi(Zi = 0)) = 1 (9)

Under these assumptions, we have

E[Yi|Zi = 1]− E[Yi|Zi = 0] =

E[βi(Di(Zi = 1)−Di(Zi = 0))] + E[γi(Mi(Zi = 1)−Mi(Zi = 0))] =

E[βi|Di(Zi = 1) > Di(Zi = 0)]P (Di(Zi = 1) > Di(Zi = 0))+

E[γi|Mi(Zi = 1) > Mi(Zi = 0)]P (Mi(Zi = 1) > Mi(Zi = 0)). (10)

The first equality follows from model equation 2 and assumption 7. The second equality follows

from the monotonicity assumptions 8 and 9.

By the exogeneity assumption 7, P (Di(Zi = 1) > Di(Zi = 0)) and P (Mi(Zi = 1) > Mi(Zi = 0)) are

identified as E[Di|Zi = 1]− E[Di|Zi = 0] and E[Mi|Zi = 1]− E[Mi|Zi = 0]. Combining this, we have

that

E[βi|Di(Zi = 1) > Di(Zi = 0)] =

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Z = 0]
− E[γi|Mi(Zi = 1) > Mi(Zi = 0)](E[Mi|Zi = 1]− E[Mi|Zi = 0])

E[Di|Zi = 1]− E[Di|Zi = 0]
.

(11)

Here, E[βi|Di(Zi = 1) > Di(Zi = 0)] is the LATE of interest, E[Yi|Zi=1]−E[Yi|Zi=0]
E[Di|Zi=1]−E[Di|Z=0]

is a standard Wald

(two-stage least squares) estimator with outcome Yi, treatment Di, and instrument Zi, E[γi|Mi(Zi =

1) > Mi(Zi = 0)] is the sensitivity parameter, and
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E[Mi|Zi = 1]− E[Mi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]

can be estimated by a two-stage least squares regression with outcome Mi, treatment Di, and

instrument Zi.

D.2 Model 2: Binary Zi, Continuous Mi, Di

Here, our assumptions in addition to the model in equations 2, 4, and 5 are

Zi⊥⊥(βi, γi, αi, πi, δi, ε1i, ε2i, ε3i) (12)

P (αi + δiπi ≥ 0) = 1 (13)

P (δi ≥ 0) = 1 (14)

cov(Mi(0),Mi(1)) ≥ 0. (15)

Under these assumptions, we have

E[Yi|Zi = 1]− E[Yi|Zi = 0] =

E[βi(αi + δiπi)] + E[δiγi].

(16)

This holds because Zi is independent from all causal effects and the error terms.

E[δiγi]

is the bias term we need to bound.

Note that with Model 1 (with binary Di,Mi), we would have E[δiγi] = E[γi|δi = 1]P (δi = 1) =

E[γi|δi = 1](E[Mi|Zi = 1]− E[Mi|Zi = 1]). This explains why we have only one sensitivity parameter

in Model 1, whereas the next section shows that we have two unknown parameters in Model 2.
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Using similar reasoning as before, we also have

E[Di|Zi = 1]− E[Di|Zi = 0] = E[αi + δiπi] (17)

and

E[Mi|Zi = 1]− E[Mi|Zi = 0] = E[δi]. (18)

D.2.1 With Measured Mi

Rewrite the bias term as

E[δiγi] = cov(δi, γi) + E[δi]E[γi]. (19)

In the second term, E[δi] is point-identified as E[Mi|Zi = 1] − E[Mi|Zi = 0], while E[γi] will be a

sensitivity parameter.

Further rewrite

cov(δi, γi) = cor(δi, γi)σδiσγi . (20)

In this latter term, we can decompose σδi as

√
var(Mi(1)) + var(Mi(0))− 2cov(Mi(1),Mi(0)). (21)

The variance terms are nonparametrically point-identified as var(Mi|Zi = z). Regarding the co-

variance, intuition might suggest that monotonicity (Mi(1) ≥ Mi(0)) implies that it is positive, but

one can create joint distributions of (Mi(1),Mi(0)) where this is not the case. However, the Frechét-

Hoeffding bounds (e.g. Aronow, Green and Lee (2014)) for this quantity using the marginals are not

sharp, because the monotonicity does in fact improve the lower bound. Very recent work character-

izes this lower bound under monotonicity (Nutz and Wang 2022). Since we are not aware of research

on how to estimate this bound, especially with covariates, we make the simplifying assumption that
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cov(Mi(1),Mi(0)) ≥ 0. We evaluate the consequences and the plausiblity of this assumption in section

D.4. Using this assumption, an upper bound for equation 21 is

√
var(Mi|Zi = 1) + var(Mi|Zi = 0). (22)

Further using −1 ≤ cor(δi, γi) ≤ 1, we can bound equation 20 as

−
√

(var(Mi|Zi = 1) + var(Mi|Zi = 0))σγi

≤ cov(δi, γi) ≤√
(var(Mi|Zi = 1) + var(Mi|Zi = 0))σγi ,

(23)

where σγi , the standard deviation of the direct causal effect of Mi on Yi, is the second sensitivity

parameter.

Collecting terms and rearranging, we have

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
− 1

E[Di|Zi = 1]− E[Di|Zi = 0]
×

{(E[Mi|Zi = 1]− E[Mi|Zi = 0])E[γi] +
√
var(Mi|Z = 1) + var(Mi|Z = 0)σγi}

≤ E

[
αi + δiπi

E[αi + δiπi]
βi

]
≤

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
− 1

E[Di|Zi = 1]− E[Di|Zi = 0]
×

{(E[Mi|Zi = 1]− E[Mi|Zi = 0])E[γi]−
√
var(Mi|Z = 1) + var(Mi|Z = 0)σγi},

(24)

if
E[Mi|Zi = 1]− E[Mi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
is positive. If it is negative, the inequality signs reverse.

D.2.2 With Mismeasured Mi

Often researchers are made aware of potential violations of the exclusion restriction after initial data

collection. Although they then might gather some measure of a candidate Mi variable, it may well be

A12



affected by measurement error. It turns out that such an error-ridden measure is still informative and

can be used for sensitivity analysis.

We formalize this by complementing the model in equations 2 - 5 with a model for M?
i , the observed

measure of the now unobserved Mi:

M?
i = Mi + ηi (25)

and by assuming Zi,Mi⊥⊥ηi and E[ηi] = 0. This is “classical” measurement error. We show here

that the resulting estimator for the bounds stays the same, although measurement error does indeed

widen the bounds compared to a situation without measurement error.

As before, we want to gain information on the bias term (equation 19) from the data. E[δi] remains

identified under the measurement model in equation 25 and the stated assumptions on the measurement

error: E[M?
i |Z = 1]−E[M?

i |Z = 0] = E[Mi+ηi|Z = 1]−E[Mi+ηi|Z = 0] = E[Mi|Z = 1]−E[Mi|Z =

0] = E[δi].

It further turns out that the variances var(Mi(z)) are not point-identified anymore, although they

can be bounded from above by the same quantities as in the case without measurement error. Accord-

ingly, the resulting bounds for the sensitivity analysis do not change. To see why, consider

var(Mi(z)) = var(Mi|Zi = z) = var(M?
i − ηi|Z = z) =

var(M?
i |Z = z) + var(ηi|Z = z)− 2cov(M?

i , ηi|Z = z) =

var(M?
i |Z = z) + var(ηi)− 2cov(M?

i , ηi|Z = z).

(26)

Regarding this last term, we have

cov(M?
i , ηi|Z = z) = cov(Mi + ηi, ηi|Z = z) =

cov(Mi, ηi|Z = z) + var(ηi|Z = z) = var(ηi).

(27)

A13



Accordingly,

var(Mi(z)) = var(M?
i |Z = z)− var(ηi) ≤ var(M?

i |Z = z). (28)

This bound could be improved upon if we could improve the trivial zero lower bound for var(ηi).

However, it is only possible to bound var(ηi) from above using var(Mi).

In sum, equation 28 shows that the observed conditional variance of the measurement is equal to or

larger than the marginal variance of the potential outcome of the actual Mi variable. If measurement

error is large, the empirical estimate will be far away from zero, even though the true marginal variance

might be close or equal to zero. This is the information loss incurred by the measurement error.

Accordingly, the bounds in equation 24 remain valid, substituting M?
i for Mi.

D.3 Deriving Values for the Second Sensitivity Parameter

We assume the researcher has specified a range of values for E[γi] as [a, b]. If one then assumes that the

unit-level causal effects also are within this range, then one can derive values for σγi if we also assume

a specific shape for the distribution supported on this range.

We suggest a four-parameter Beta distribution as the class of distributions for the unit-specific causal

effects. The distribution has parameters (α, β, a, b). The general formula for its standard deviation is

√
αβ(b− a)2

(α + β)2(α + β + 1)
. (29)

For illustrative purposes, Figure A1 shows three examples of different distributions:

1. Little variance / bell curve. α = β = 4. If unit-causal effect varied between 0 and 1, then this

distribution would imply a standard deviation of the causal effects of approx. 0.17.

2. Medium variance / uniform distribution. α = β = 1. If unit-causal effect varied between 0 and 1,

then this distribution would imply a standard deviation of the causal effects of approx. 0.29.

3. High variance. α = β = 0.5. If unit-causal effect varied between 0 and 1, then this distribution

would imply a standard deviation of the causal effects of approx. 0.35.
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Figure A1: Three examples of possible Beta distributions of unit-level causal effects sup-
ported on [0, 1]. X-axis depicts unit-level causal effect, y-axis depicts its density.

Our R package contains a function to compute the standard deviation given the four parameters.

Again, these three specific distributions are just examples to give researchers an idea of how large the

sensitivity parameters might be in principle. As discussed in the main text, we suggest to explicitly

investigate values of the sensitivity parameter for which main inferences do not hold. Given information

from secondary literature on the effect of Mi on Yi as well as these possible shapes of the distribution

of the unit-level causal effects, researchers should then assess whether such an extreme value of the

sensitivity parameter appears plausible.

D.4 Understanding cov(Mi(1),Mi(0)) > 0

We here show how to understand the assumption that cov(Mi(1),Mi(0)) ≥ 0, how to detect possible

violations to it, and how to incorporate those into the sensitivity analysis.
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First, the assumption that cov(Mi(1),Mi(0)) ≥ 0 decreases the width of the bounds for the causal

effect of interest, but has no effect on the location of the bounds. To see why, consider again our

expression for cov(δi, γi), which is one part of the bias term:

cov(δi, γi) = cor(δi, γi)σδiσγi

The standard deviations are always non-negative. The correlation is unknown and between −1 and

1. Therefore, this covariance between the causal effects is always in the interval [−σδiσγi , σδiσγi ]. Our

analysis bounds σδi from above using the data. Given values of the sensitivity parameter σγi , this

results in bounds centered at 0 that are “added” to the mean estimate (which already may include bias

adjustments from the first sensitivity parameter).

The empirical bound for σδi is based on writing it as

√
var(Mi|Z = 1) + var(Mi|Z = 1)− 2cov(Mi(1),Mi(0)).

Clearly, when the covariance is positive, this term becomes smaller, and the width of the resulting

bound [−σδiσγi , σδiσγi ] becomes smaller, too.

Second, to illustrate the relationship between the monotonicity assumption Mi(1) ≥ Mi(0) and

bounds on cov(Mi(1),Mi(0)), consider Figure A2. On the X- and Y-axis, we have values for potential

outcomes Mi(0) and Mi(1), respectively. Without loss of generality, we assume here that these are

between 0 and 1.

The dashed diagonal line graphs the monotonicity constraint Mi(1) ≥Mi(0). We then plot the do-

mains of two different joint distributions for Mi(1),Mi(0). In both cases, Mi(0) is uniformly distributed

on [0, 0.3], and therefore has a mean of 0.15. The domain of Mi(1) differs between the two distributions,

but it is always a finite closed interval. The dotted squares indicate the domains of all possible joint

distributions given the domains of the marginal distributions.

The solid, piecewise linear function in the bottom left corner determines Mi(1) as follows:
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Mi(1) =


0.4−Mi(0) if 0 ≤Mi(0) ≤ 0.2

Mi(0) if 0.2 ≤Mi(0) ≤ 0.3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Mi(0)

M
i(

1)

Figure A2: Understanding the relationship between the monotonicity constraint and the
covariance between potential outcomes. Solid lines are the domains of two different joint
distributions of Mi(0),Mi(1) with negative covariance. Dotted lines indicate the domain of
all possible joint distributions associated with each of these two cases. The dashed diagonal
graphs the monotonicity constraint.

In this model, the average causal effect of Zi on Mi is 1
15

. While the downward sloping part of

the function contributes to a negative covariance, it cannot cross the monotonicity constraint, and

the upwarding sloping part of the function then increases the covariance. Clearly, the monotonicity

constraint restricts the covariance from becoming very negative.

To make the covariance more negative, one could shift Mi(1) upwards so that the monotonicity

constraint is without consequence. The second line towards the top plots such a function (Mi(1) =

0.8 −Mi(0)). Since the distribution of Mi(0) does not change, the average causal effect here is much

larger (0.55)

This suggests that while the monotonicity condition does not ensure that cov(Mi(1),Mi(0)) is ac-

tually positive, it suggests that a negative covariance is associated with large positive mean effects of
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Zi on Mi.
17

In sum, while the cov(Mi(1),Mi(0)) ≥ 0 assumption used to bound σδi from above may not auto-

matically hold under our monotonicity assumption, violations of it are likely to occur together with a

large mean effect of Zi on Mi. The latter is identified from the data and directly incorporated into our

sensitivity analysis. If analysts are not willing to impose cov(Mi(1),Mi(0)) ≥ 0 and they find a large

mean effect of Zi on Mi, we therefore suggest that they allow for larger values of the second sensitivity

parameter σγi than is otherwise plausible. This will increase the width of the bounds [−σδiσγi , σδiσγi ]

and can therefore to some degree address concerns stemming from the fear that the covariance between

the potential outcomes is negative.

D.5 Relationship Between Different Monotonicity Assumptions

To assess the relationship between the traditional monotonicity assumption and partial monotonicity,

consider the case of binary Zi and binary Mi, and no covariates. In this case, a saturated structural

model for Di without any functional-form assumptions can be written

Di = α + β1iZi + β2iMi + β3iZiMi + εi

where α = E[Di(Zi = 0,Mi = 0)], β1i = Di(Zi = 1,Mi = 0) −Di(Zi = 0,Mi = 0), β2i = Di(Zi =

0,Mi = 1)−Di(Zi = 0,Mi = 0), and β3i = Di(Zi = 1,Mi = 1)−Di(Zi = 0,Mi = 1)− (Di(Zi = 1,Mi =

0)−Di(Zi = 0,Mi = 0)).

Monotonicity requires Di(Zi = 1) ≥ Di(Zi = 0) for all i, which restricts the total effect of Zi on

Di. This is equivalent to stating that β1i + β2iMi(Zi = 1) + β3iMi(Zi = 1) ≥ β2iMi(Zi = 0) for all i.

This restricts the joint distribution of (β1i, β2i, β3i,Mi(Zi = 0),Mi(Zi = 1)). Note that the Mi(z) will

generally be associated with the coefficients when Mi and Di are confounded, but this is ruled out by

the assumptions we present to identify the new LATE.

17If the mean effect of Zi were negative, the monotonicity constraint would reverse and

would restrict the covariance from becoming too positive when mean effects are small.
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Partial monotonicity is equivalent to the requirement that β1i + β3im ≥ 0 for all m and i, where m

is constant. This restricts the direct effect of Zi on Di not going through Mi to be in the same direction

for all m. This restricts the distribution of (β1i, β3i). In theory, there could be fine-tuned distributions

of (β1i, β2i, β3i,Mi(Zi = 0),Mi(Zi = 1)) where monotonicity holds but partial monotonicity does not.

However, it seems natural to assume that the restrictions on β1i, β3i also hold when suitable restrictions

on (β1i, β2i, β3i,Mi(Zi = 0),Mi(Zi = 1)) are plausible.

D.6 Implementation & Statistical Inference in the Sensitivity Analysis

For implementing the sensitivity analysis, we need to make a number of choices for estimation and

inference. As stated before, and consistent with most IV applications, estimation of the mean differ-

ences in equation 24 can be pursued using two-stage least squares. For the variance terms, we pick

corresponding linear conditional variance models (Shalizi 2019, 217). We first estimate auxiliary mean

regressions

E[Mi|Zi, Xi] = ζ1 + ζ2Zi + (Xi − X̄i)ζ3

where ζ1, ζ2 are scalars and ζ3 is a vector, and generate residuals ri = Mi − Ê[Mi|Zi, Xi]. We then

estimate var(M |Z = z) via

E[r2i |Zi, Xi] = ζ4 + ζ5Zi + (Xi − X̄i)ζ6

where ζ4, ζ5 are scalars and ζ6 is a vector. Under this model, we have

var(M |Z = z) =

∫
x

ζ4 + ζ5z + (x− X̄i)ζ6dx = ζ4 + ζ5z,

so that our estimate for var(M |Z = 1) + var(M |Z = 0) is 2ζ4 + ζ5z.

Finally, we use the nonparametric (paired) bootstrap to estimate the sampling distribution of the

resulting estimator for the bounds. Young (2019) has recently documented the widespread presence of

non-IID errors in two-stage least squares regressions and suggests the bootstrap to improve statistical
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inference relative to standard robust covariance estimators.

Specifically, we implement the “bootstrap-c”, which involves drawing from the original sample with

resampling and storing point estimates β̂ of the bounds based on this sample. We base statistical

inference on both “percentile” and the adjusted, “basic” bootstrap confidence interval (Davison and

Hinkley 1997, 193–202), using the R package boot.

We find that the percentile method very closely replicates the results of Spenkuch and Tillmann

(2018). In our replication of Carnegie and Marinov (2017), we find that an approach that uses a simple

(non-clustered) bootstrap, percentile confidence intervals, and that removes outliers from the bootstrap

distribution according to the standard boxplot definition (i.e., samples that are more than 1.5 inter-

quartile ranges below the 25% or above the 75% quantile) also closely replicates the original results.

Some remaining minor discrepancies may be due to slight changes in the sample composition, since we

have to delete some observations for which measures of Mi are not available (as explained in the main

text, Carnegie and Marinov (2017) did not adjust for Mi in their main analysis, but they evaluated

its association with the instrument). All in all, this suggests that our approach can closely replicate

results from standard two-stage least squares implementations, and may be additionally more robust

to outliers as suggested by Young (2019).

E Multiple Post-Instrument Covariates

Zi Di

Ui

Yi

M1i

M2i

Zi Di

Ui

Yi

M1i

M2i

Figure A3: Graphs with K = 2 post-instrument covariates. Left graph: Particular causal
dependence between post-instrument covariates. Right graph: Assumption of causal inde-
pendence that is used in the sensitivity analysis.
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In this section, we analyze the case of K > 1 post-instrument covariates. Figure A3 shows example

DAGs where K = 2. In the left graph, one allows for “causal dependence” between M1i and Mi2,

specifically the latter influencing the former. We show that in such cases, a sensitivity analysis becomes

practically intractable. The right graph shows an example where one assumes “causal independence”

between the the post-instrument covariates. We show that under such an assumption, our proposed

sensitivity analysis can easily be generalized.

E.1 Consequences of Causal Dependence of Post-Instrument Covariates

Consider first a system of structural equations with varying coefficients which implies the left graph in

Figure A3, leaving Xi implicit:

Yi = µY + βiDi + γ1iM1i + γ2iM2i + λ
′

1iXi + ε1i. (30)

Di = µD + αiZi + π1iM1i + π2iM2i + λ
′

2iXi + ε2i (31)

M1i = µM1 + δ1iZi + θiM2i + λ
′

3iXi + ε3i. (32)

M2i = µM2 + δ2iZi + λ
′

4iXi + ε4i. (33)

This is a natural generalization of the model in the main text, with the exception that one commits

to a particular causal ordering where M2i influences M1i. θi is the individual-level causal effect that

corresponds to this influence.

Under a suitable generalization of assumptions 12–15, the bias term then becomes

E[δ1iγ1i + δ2iγ2i + δ2iθiγ1i].

Here, E[δ1iγ1i + δ2iγ2i] corresponds to the total effect of the instrument through the post-instrument

covariates if M1i and M2i were “causally independent”, that is, were not influence to each other. As

shown in the next sections, the presence of these terms leads to a generalization of sensitivity analysis

with one post-instrument covariates such that each post-instrument covariate is associated with two
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sensitivity parameters as before (a mean effect on Yi as well as its standard deviation).

Beyond that, under causal dependence, E[δ2iθiγ1i] is an additional effect that corresponds to the

path Zi →M2i →M1i → Yi. Here, one can further write

E[δ2iθiγ1i] = cov(δ2iθi, γ1i) + E[δ2iθi]E[γ1i]

= cor(δ2iθi, γ1i)σδ2θσγ1 + (cor(δ2i, θi)σδ2σθ + E[δ2i]E[θi])E[γ1i].

(34)

In this expression, there are three sensitivity parameters that are introduced by the causal de-

pendence M2i → M1i and that cannot be further bounded: E[θi], σδ2θ, and σθ (the other sensitivity

parameters appear also under causal independence). Note that this is a simple case with just two post-

instrument covariates. With additional post-instrument covariates, the number of of paths connecting

Zi to Yi and associated sensitivity parameters would further increase. For example, with three causally

dependent post-instrument covariates, one may have paths such as Zi →M3i →M2i →M1i → Yi, etc.

Therefore, we suggest to focus on the case with causally independent post-instrument covariates.

E.2 Sensitivity Analysis under Causal Independence

The right graph in Figure A3 shows a DAG with K = 2 causally independent post-instrument covariates.

The assumption of causal independence is not testable. Due to unobserved confounding, one has open

paths such as M1i → Ui ← M2i that create a dependence between M1i and M2i even in the absence of

direct causal effects.

For the case of K post-instrument covariates, we generalize the structural model straightforwardly

as:

Yi = µY + βiDi +
K∑
k=1

γkiMki + λ
′

1iXi + ε1i. (35)

Di = µD + αiZi +
K∑
k=1

πkiMki + λ
′

2iXi + ε2i (36)
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Mki = µkM + δkiZi + λ
′

3iXi + ε(2+k)i, for k = 1, ..., K. (37)

Leaving the conditioning on Xi implicit as before, assumptions 12–15 become

Zi⊥⊥(βi, γki, αi, πki, δki, εki), for k = 1, ..., K (38)

P (αi + δkiπki ≥ 0) = 1, for k = 1, ..., K (39)

P (δki ≥ 0) = 1, for k = 1, ..., K (40)

cov(Mki(0),Mki(1)) ≥ 0, for k = 1, ..., K. (41)

It is important to note that the monotonicity assumptions 39 and 40 have to hold for each post-

instrument covariate.

The estimand becomes

E

[
αi +

∑K
k=1 δkiπki

E[αi +
∑K

k=1 δkiπki]
βi

]
. (42)

The bias term evaluates to

K∑
k=1

E[δkiγki]. (43)

As before, one can write

E[δkiγki] = cov(δki, γki) + E[δki]E[γki], (44)

and

cov(δki, γki) = cor(δki, γki)σδkiσγki , (45)

and
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σδki =
√
var(Mki(1)) + var(Mki(0))− 2cov(Mki(1),Mki(0)). (46)

for each k. One can therefore bound each σδki as
√
var(Mki|Zi = 1) + var(Mki|Zi = 0) using as-

sumption 41.

The first stage is

E[Di|Zi = 1]− E[Di|Zi = 0] = E[αi +
K∑
k=1

δkiπki]. (47)

The regressions of each Mki on Zi yield E[δki].

Rearranging and collecting terms, we have

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
− 1

E[Di|Zi = 1]− E[Di|Zi = 0]
×{

K∑
k=1

{E[Mki|Zi = 1]− E[Mki|Zi = 0])E[γki] +
√
var(Mki|Z = 1) + var(Mki|Z = 0)σγki}

}

≤ E

[
αi +

∑K
k=1 δkiπki

E[αi +
∑K

k=1 δkiπki]
βi

]
≤

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
− 1

E[Di|Zi = 1]− E[Di|Zi = 0]
×{

K∑
k=1

{E[Mki|Zi = 1]− E[Mki|Zi = 0])E[γki]−
√
var(Mki|Z = 1) + var(Mki|Z = 0)σγki}

}
(48)

In sum, each post-instrument covariate is associated with two sensitivity parameters, E[γki] and

σγki . The interpretation is as before: E[γki] is the mean direct effect of Mki on Yi, holding Di and all

other observed variables constant. σγki is the standard deviation of this effect across individuals.

It is straightforward to show that classical measurement error, as before, does not change this result.
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