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Abstract

When using instrumental variables, researchers often assume that causal effects are
only identified conditional on covariates. We show that the role of these covariates
in applied research is often unclear and that there exists confusion regarding their
ability to mitigate violations of the exclusion restriction. We explain when and how
existing adjustment strategies may lead to “post-instrument” bias. We then discuss
assumptions that are sufficient to identify various treatment effects when adjustment
for post-instrument variables is required. In general, these assumptions are highly re-
strictive, albeit they sometimes are testable. We also show that other existing tests are
generally misleading. Then, we introduce a sensitivity analysis that uses information
on variables influenced by the instrument to gauge the effect of potential violations of
the exclusion restriction. We illustrate it in two replications of existing analyses and
summarize our results in easy-to-understand guidelines.
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1 Introduction

Identification of causal effects using instrumental variables is a popular approach in both
experimental and observational research, and recent decades have seen an increasingly so-
phisticated understanding of what effects such instruments may identify. Based on the
seminal work by Angrist, Imbens and Rubin (1996), social scientists are nowadays aware
of the role that assumptions such as the exclusion restriction or first-stage monotonicity
play (Betz, Cook and Hollenbach 2018; Marshall 2016; Sovey and Green 2011). However,
we contend that the choice of covariates in instrumental variable (IV) identification is not
well-understood and leads to biases in applied research. Of special interest is the widespread
adjustment for “post-instrument” variables to address a violation of the exclusion restriction,
on which existing guidelines are either silent or contradictory.

In this paper, we give straightforward advice for researchers on how to think about
covariates in the context of IV analysis and which of these need to be controlled for. To this
end, we uncover new identification results and subtleties, including with regards to (partial)
tests of identifying assumptions. Furthermore, we develop a semi-parametric sensitivity
analysis that aids applied researchers when there is a direct effect of an instrument that runs
over measured variables.

Our contribution is motivated by both the widespread practice and voiced concerns of re-
searchers that use instrumental variables. We have identified 154 papers published since 2010
in top political science journals! that use IV and explicitly discuss the exclusion restriction.
Among those, 39 (25%) use post-instrument covariates to justify the exclusion restriction.?

As we will show , this is a lower bound on the phenomenon: There may be other papers that

!The American Political Science Review, the American Journal of Political Science, and
the Journal of Politics.
2See Appendix A. Felton and Stewart (2022, p. 41) review IV papers published in top

sociology journals and assess that 27 out of 34 include potentially post-instrument covariates.



did not discuss relevant post-instrument covariates, but should have considered them.

Indeed, some researchers are aware that adjustment for variables on other paths from in-
strument to outcome posits a thorny issue. For example, both Kern and Hainmueller (2009)
and Carnegie and Marinov (2017) use instrumental variables and two-stage least-squares
regression where they choose not (or not always) to control for such variables to avoid
what they call “post-treatment bias”. But there seems to be no justification for this in the
literature, which uses this term for biases that are introduced in standard adjustment iden-
tification strategies, where instruments play no role (Rosenbaum 1984; Angrist and Pischke
2009; Montgomery, Nyhan and Torres 2018). On the other hand, Wucherpfennig, Hunziker
and Cederman (2016), for example, claim that “the instrumental variable logic is immune
to any correlation (and even causation) between the instruments and the covariates”. A
leading econometrics textbook similarly advises to simply control for covariates influenced
by the instrument (Wooldridge 2010, 94, 938). Other standard textbooks like Angrist and
Pischke (2009) and reader’s guides like Sovey and Green (2011) do not discuss such issues.

To fix ideas, consider an example from Angrist (1990), whose identification strategy has
inspired several studies of political behavior (Berinsky and Chatfield 2015). The author is
interested in estimating the effect of serving in the Vietnam war on earnings. The draft was
largely determined by a randomized lottery, and Angrist notes that men who have a low
draft lottery number were more likely to serve in the war. He uses functions of this number
as instruments for military service.

There could be some concerns about the validity of the exclusion restriction. For example,
those who received a low lottery number could have chosen to stay in school to obtain a
deferment (Angrist 1990, 330). This creates a link between the lottery and earnings via
education. So if information on post-lottery education was available, should we control for
it?

In this paper, we answer this question and discuss various related problems. We use both

potential outcomes and directed acyclic graphs (Pearl 2009) in our formal analysis. This



allows us to give advice to applied researchers that is both easy to formulate and understand.
We first make clear the asymmetric role of pre- and post-instrumental variables. Then,
we illustrate how adjustment for variables influenced by the instrument may not always
be successful, and that adjustment for variables influenced by the treatment will lead to
biases in IV identification even when the IV is unconditionally valid. The mechanics behind
these phenomena resemble the better-known “post-treatment” bias in adjustment strategies
(Montgomery, Nyhan and Torres 2018), although additional, more subtle problems occur.
However, we also show, perhaps to the surprise of some researchers, that adjustment for
variables influenced by the instrument is sometimes necessary for successful identification.
In some cases, we show that this identifies the well-known “local” or a weighted average
treatment effect. For other cases, we propose to identify a new, different treatment effect.
In sum, “post-instrument bias” is quite different from “post-treatment bias”.

The assumptions for valid post-instrument adjustment are highly restrictive, although
we also prove that they are testable under some circumstances. In this context, we discuss
the evidential value and implicit causal assumptions of other informal tests and robustness
checks that are prevalent in the applied literature. We show that these tests are generally
misleading.

What if the strong assumption necessary for identification are not plausible or rejected
by the data? We propose that researchers utilize measures of the variable on the pathway
from the instrument to the outcome for a semi-parametric sensitivity analysis. Our approach
generalizes previous approaches (Conley, Hansen and Rossi 2012; Van Kippersluis and Ri-
etveld 2018) that operate under a strong effect homogeneity assumption and cannot use
sample information to bound biases. We illustrate our approach by reanalyzing the data of
Spenkuch and Tillmann (2018) on the causal effect of Catholicism on the Nazi vote share at
the end of the Weimar Republic, as well as the data of Carnegie and Marinov (2017) on the
effect of foreign aid on human rights. The applications highlight the need to relax stringent

linearity assumptions and to account for potential heterogeneity in causal effects. We make



our methodology available as an R package.

A formal analysis of violations to the exclusion restriction was already provided in the
seminal paper by Angrist, Imbens and Rubin (1996), but similar to Conley, Hansen and Rossi
(2012) and Van Kippersluis and Rietveld (2018), this did not incorporate post-instrument
variables. A more closely related paper is Deuchert and Huber (2017). They point out that
investigating instruments that may affect more than one variable is also highly relevant be-
cause oftentimes the same instrument is used to study causal effects of different treatment
variables so that researchers might be tempted to adjust for these other treatments. For ex-
ample, Bazzi and Clemens (2013) discuss the “origin of a country’s legal system” instrument
that has been used for at least seven different treatments. Mellon (2024) points out that
weather-related variables like measures of rainfall are often used as instruments for various
relationships, but have been linked empirically to close to 200 variables, each of which con-
stitutes a potential measured violation to the exclusion restriction. Similar to our approach,
Deuchert and Huber (2017) also use causal graphs. However, they use these for illustrative
purposes only and prove their main results under a strong linearity assumption. In contrast,
we discuss these issues in a completely nonparametric framework and integrate causal graphs
with the potential outcomes approach. Importantly, we discuss additional identification as-
sumptions, prove that these are sometimes testable, introduce a new causal estimand, and
propose a new sensitivity analysis. Some of the problems that we discuss are similar to what
Elwert and Winship (2014) and Elwert and Segarra (2022) call “endogenous selection bias”,
and Betz, Cook and Hollenbach (2018), Imai and Kim (2019) and Eggers, Tunén and Dafoe
(2024) also use causal graphs to illustrate (failures of) IV identification. Our sensitivity
analysis complements the approaches by Conley, Hansen and Rossi (2012) and Cinelli and
Hazlett (2022) that cannot incorporate information on post-instrument covariates. Among
other things, this entails that our sensitivity analysis can make estimates more robust (i.e.,
move farther away from zero into the direction implied by the original estimate), which we

also show in one of our applications.



2 Understanding Conditional IV Identification Using
Causal Graphs

In this section, we present a series of causal graphs that allow for IV identification of various
treatment effects when the key “ignorability” assumption only holds conditionally. We use
causal graphs because they offer a straightforward formalization of the language already used
by many researchers to communicate assumptions about the causal ordering of variables, di-
rect and indirect effects, confounding, etc. Additionally, they can be integrated with the
popular potential outcomes approach to causality, and allow for a derivation of assumptions
on the distribution of these potential outcomes. Specifically, we interpret graphs as nonpara-
metric structural equation models, as in Imai and Kim (2019). We expand on such formal

aspects in Appendix B.

2.1 A First Causal Graph for our Running Example

Consider again our example from Angrist (1990)’s seminal analysis. Angrist is interested in
the causal effect of serving as a soldier in the Vietnam war (D;) on later earnings Y;. The
draft lottery leads to a binary instrument Z; that indicates draft eligibility.

The “ceiling” for the draft varied by year due to fluctuating demands by the military.
Therefore, the cohort X; of a man influenced the probability that he would be drafted. At
the same time, birth year is clearly causally prior to the draft and might have other effects
on the outcome. This can easily be depicted in a causal graph such as Figure 1.

The dashed arrows emanating from the U;-variable indicate that it stands for unobserved
variables that may (directly) influence treatment, outcome, and covariates X;, but not the
instrument. In the Vietnam draft example, U; may contain variables describing the socio-
economic status of one’s parents. These will impact the decision to enlist in the military and
on later socio-economic outcomes. They may also affect the timing of birth. The existence

of such unobserved confounders is the central motivation for employing IV identification



because they make identification of the effect of D; on Y; via regression impossible. With
this first example in mind, we now discuss basic quantities of interests and identification

assumptions in the potential outcomes framework.

Figure 1: Benchmark graph. In this graph, Z; is an instrument for the effect of D; on Y;
conditional on X;, but not unconditionally.

2.2 Basic IV Identification in the Potential Outcomes Framework

Generally, we will discuss the identification of variants of a local average treatment effect
(LATE):

Here Y;(D = d) is the potential outcome of Y in unit ¢ when D; is set to d, and D;(Z; = z)
is the potential outcome of D in unit ¢ when Z; is set to z. Therefore, this expression defines
the average causal effect of a binary treatment D; on outcome Y; among those individuals 1)
for which an instrument Z; changes treatment status (compliers) and 2) which are character-
ized by covariate profile X;. Throughout this paper, we assume that there are no spillovers,
i.e., the treatment or instrument of one unit does not affect other unit’s variables.

What if treatment is continuous, as is the case in our two application studies? First write
the causal effect of instrument on treatment as D;(Z = 1) — D;(Z = 0) = «;. If the causal

(“structural”) equation of interest has heterogeneous effects, but otherwise is linear, as in

Yi = py + 5D + €,

then the parameter of interest is usually (e.g., Angrist and Pischke (2009, 186-187))



can be understood as individual-level weights of the treatment effects ;.

Q;
E[Ozz]
Conventionally, three assumptions are used to identify such treatment effects. These

Here,

are often discussed for the case of binary instrument and treatment, although they easily

generalize. The first assumption, monotonicity, assumes that

P(Di(Z; =1) > Di(Z; =0)) = 1.

That is, the instrument has a causal effect on the treatment that pushes every unit in
the same direction, and there are no “defiers”. If this holds, a; > 0 so that the expression
in equation 1 is a weighted average of individual-treatment effects 3;, where the weights are
all greater than or equal to zero.

Secondly, it is assumed that Z; and D; are dependent (“relevance”):

E[D;|Z; =1,X;] — E[D;|Z; =0, X;] #0

, which is directly testable. In this paper, we will focus on understanding the crucial condi-

tional independence assumption (CIA)

In words, this assumptions states that the potential outcome of outcome Y; when treatment
D; is set to d and the potential outcome of D; when instrument Z; is set to z are jointly
independent from Z;, given covariates X;.

If these assumptions - CIA, monotonicity, and relevance - hold, two-stage least squares
with saturated models in both stages estimates a weighted average of X;-specific LATEs, and

this or linear unsaturated models are dominant in applied research (Angrist and Imbens 1995;



Angrist and Pischke 2009, 177). Notably, the CIA subsumes both the exclusion restriction
and the more opaque “ignorability” requirement. We use graphs to illustrate when this
latter assumption hold, and will usually discuss the “causal first-stage” assumption D;(Z =
2) L Z;| X; separately from the Y;(D; = d)1LZ;| X; requirement, since this is more intuitive.

Formal derivations of the joint independence and other proofs are in Appendix C.

2.3 Identification with Pre-Instrument Covariates

We start with Figure 1 as a benchmark graph. In this graph, the treatment and outcome are
driven by unobserved confounders U;, while there are also observed confounders X; that may
influence the instrument, treatment, and outcome. A first important insight is that this will
not be the case when Z; is physically and unconditionally randomized, because this precludes
the X; — Z; path. However, if there are such observed confounders, adjustment for them is
necessary. Intuitively, a first-stage regression of D; on Z; only would not give the causal effect
of Z; on D; because of the open “back-door” paths Z; + X; — D; and Z; + X; + U; — D;.
Similarly, the instrument and the outcome would be connected through a path other than
the effect going through D;. Conditioning on X; solves both problems, because X; “blocks”
these spurious paths.

Here, the CIA would not hold if at least one of two key conditions are violated. First, it
may be that the confounders U; also influence the instrument Z;. In this case, Z; and U; are
dependent, and conditioning on X; does not break this dependence. This is the problem of
“back-door paths” which has found extensive treatment in the graphical literature (Shpitser,
VanderWeele and Robins 2010).

Second, Z; may have an effect on Y; going not through D;, which violates the “exclusion
restriction”. In this case, one can think of the potential outcomes as being determined by

the equation (see Appendix B)



which clearly depends on Z;, so that the CIA is violated.

In the following, we will assume that observed pre-instrument covariates X; may exist,
and that conditioning on them solves the “back-door” problem. Specifically, this will even
hold if U; influences X; (so that the effects of variables in X; are not identified). This relaxes
the common restriction for all X; variables to be “exogenous” (e.g. Wooldridge 2010, 110),
and differentiates such control variables from the post-instrument variables we discuss next.
For ease of visual presentation, we will not depict the X; nodes in the causal graphs that we

discuss in the remainder of this article.

2.4 Identification with Post-Instrument Covariates

We now discuss a variety of situations in which researchers measure covariates M; that are
influenced by the instrument, that influence the outcome, and that may also influence or
be influenced by the treatment.> Our main result is that identification of a local average
treatment effect is possible in some cases under strong assumptions. It turns out that
identification relies on adjustment for the M; covariates, even if they also influence the
treatment. For the latter case, we introduce a new causal estimand and show how it is
identified. Accordingly, “post-instrument” bias does not generally occur but depends on the
causal model. Additionally, ruling out causation between D; and M; allows for a test of the
identification assumptions which is easy to implement. We discuss other, informal tests in
the literature and show that these are generally misleading.

In the Vietnam draft example, a potential M; variable is college education, because the
latter may have been used to avoid the draft, and because it plausibly affects earnings. The
textbook by Wooldridge (2010, 938) discusses this complication and claims that statistical

adjustment for such a variable M; “effectively solves this problem”. In the following, we

30ur results only hold for acyclic graphs. This means that researchers need to rule out

mutual causality between variables a priori.



show that this statement needs considerable qualification.
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Figure 2: Boxes indicate the conditioning on M; and bi-directed arrows indicate dependencies
created by such conditioning. In graph (a), conditioning on M; is required and identifies a
local effect of D; on Y;. In graph (b), IV identification is not possible and conditioning on
the collider M; opens a non-causal path between U; and Z;. In graph (c), IV identification
is possible when not conditioning on M;. M; is a descendant of collider D; and conditioning
on it creates a dependence between Z; and U;

The most simple case is shown in graph (a) in Figure 2, where the variable M; is influenced
by the instrument Z; and in turn is a cause of Y;. However, neither does D; drive M;, nor
does M; influence D;, nor is U; influencing M;. Can we then simply control for the “post-
instrument” variable M; to make the instrumental variable approach work?

It turns out that under the restrictive assumptions visualized in graph (a), this condi-

tioning strategy indeed identifies an (X, M;)-specific LATE or weighted ATE as in equation
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1, since the CIA holds with conditioning set (X;, M;). To see why, consider the first-stage
effect of Z; on D;. Although M; is “post-instrument” - i.e., influenced by Z; - conditioning
on it does not invalidate the ignorability of Z; with regards to D;, i.e. D;(Z; = z) 1L Z;| X, M;
holds. Intuitively, there is no “back-door” path from Z; to D; not blocked by X;, and con-
ditioning on M; does not block any genuinely causal paths, nor does it open up any new
spurious paths, since it is not a “collider”. In a similar vein, the potential outcome Y;(D; = d)

is now determined by M;, X;, U; as

}/;(DZ - d) - fy(d, MiaXh U1)7

and is independent from Z; conditional on M, and X;. This is because the direct path
through M; is blocked while no other paths are opened up.*

There are two crucial assumptions for the validity of this approach that may be violated.
First, it may be that M; is also driven by the unobserved confounder U;. This situation is
depicted in graph (b) of Figure 2. In our running example, it is quite easy to imagine that
unobserved parental SES positively influences the choice to go to college directly. In this
case, M; becomes a “collider”, and conditioning on it (indicated by the box around it) opens
up an unblockable path (indicated by the dashed by-directed arrow) between Z; and U;.

Specifically, in the “reduced-form” part of the two-stage least squares regression, we
would compare draftees (Z; = 1) to non-draftees (Z; = 0), given the same college decision
M; = m. If Z; affects the college decision, then the fact that the latter is observed to be
constant in such a group must be due to individual differences in U;, which then affect Y;
irrespective of an actual treatment effect. E.g., draftees that did not attend college to avoid
the draft probably had lower parental SES than non-draftees, and lower wages Y; for that
reason alone - even if neither treatment nor college affected earnings.

This open “non-causal” path then actually invalidates both the first-stage D;(Z; =

4See Appendices B and C for a more detailed explanation of this formal argument.
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2) 1L Z;| X;, M; assumption due to post-treatment selection bias,®> as well as the Y;(D; =
d) 1L Z;| X;, M; assumption.

Second, even if Z; does not directly drive M;, the latter may be influenced by the treat-
ment D;, as in graph (c) of Figure 2. In this case, M; is a mediator of the D; — Y;
relationship, and is also influenced by Z; indirectly through D;. Wooldridge (2010, 95) sug-
gests that on-the-job training might be such a variable in the Vietnam draft application.
In this case, Z; is a valid instrument when one does mot adjust for M;. This is because
the exclusion restriction obviously holds, and there are also no other back-door paths which
connect Z; and Y;. However, adjusting for M; introduces a severe, but more subtle problem.
D-separation—explained in more detail in Appendix B—does not only prohibit to condition
on “colliders” to block paths, but also to condition on descendants of such variables. Since
Z; and U; collide in D;, conditioning on its “child” M; has the same qualitative consequences
as in graph (b), making it impossible to identify the ATE of Z; on D; or the LATE of D; on
Y;. In the “reduced-form” regression of Y; on Z; controlling for M;, we would again compare
individuals with different values for Z;, but the same M;. Then, observed differences in Y;
may be due to differences in unobserved U; that are mediated through D;, and not due to a
causal effect of D;.

This subtle problem went unnoticed by Deuchert and Huber (2017, 416), who discuss
a similar graph and state that conditioning on a mediator satisfies the CIA and identifies
a “partial direct effect”. As we hope we have made clear, this is not the case, because
conditioning on a mediator renders Z; correlated with U;, which prohibits any identification.®
We return to these graphs again when we discuss the possibility of testing which of the

assumptions hold.

°For an in-depth analysis of this phenomenon in standard adjustment strategies in polit-
ical science, see Montgomery, Nyhan and Torres (2018).
SFrolich and Huber (2017) propose to identify mediation effects in such a setting using

an instrument influencing D; and a separate instrument influencing M;.
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An interesting special case of graph (c) of Figure 2 is when M; stands for the inclusion
of an observation in the dataset (or, reversely, for attrition). In both observational and
experimental studies, participants often drop out based on the realization of their treatment
or their data is selectively reported due to administrative reasons (Aronow, Baron and Pinson
2019; Elwert and Winship 2014; Knox, Lowe and Mummolo 2020). Researchers are then
forced to condition on M;. In IV settings, even if M; is not directly driven by U; and does
not influence Y;, it is a descendant of the collider D;, so that the instrumental variable
becomes invalid. Similarly, in Angrist (1990), it is noted that reported earnings are censored
at a maximum [, so that the whole sample is conditional on Y < [. This means one
conditions on a descendant of the true unobserved earnings so that the IV becomes invalid,
a fact acknowledged by Angrist (1990, 334). Berinsky and Chatfield (2015) discuss this and
related selection problems that may occur for the draft lottery instrument.”

A final possible set of causal assumptions is depicted in graph 3. In this graph, M; is not
influenced by the confounder U;, but affects D;. Again, the no-confounding assumption is
crucial. If it is violated, a collider phenomenon would occur as in the previous cases, making
Z; an invalid instrument. However, if such confounding can be ruled out, one can identify a

local ATE:

This estimand has not been discussed before. It is the average causal effect of a binary treat-
ment for the latent subpopulation of units which 1) change treatment status as a response

to the instrument Z;, while firing M; at m and 2) which are characterized by covariates X;.

"See Elwert and Segarra (2022) for an analysis of this problem under a linearity assump-
tion.
8Blackwell (2017) discusses related quantities where M; would be a second randomized

instrument that does not affect Y; directly.
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Figure 3: Graph where adjustment for M; is necessary to identify a local average treatment
effect.

The intuition behind this identification result is that under the assumptions in graph
3, one can actually identify the joint (“controlled direct”) effect of Z; and M; on D;. For
those individuals that shift their treatment uptake as a result of this hypothetical joint
intervention, the effect of D; on Y] is then also identified. There are additional relevance and
monotonicity assumptions needed, which are very similar to the usual LATE assumptions.
We discuss these in more detail in Appendices C and D.5.

We summarize all of these identification results in the following proposition:

Proposition Under the assumptions in graph (a) of Figure 2, the CIA

Di(Zi = Z),Y;'(Di = d)J—I—Zi‘XivMi

holds and under the usual monotonicity and relevance assumption, the LATE estimand

ElYi{(D;=1)=Yi(D;=0)|Di(Z; =1) > D;(Z; = 0), X, M;]

is identified.

Under the assumptions depicted in graphs (b) of Figure 2, the CIA does not hold with
any conditioning set.

Under the assumptions depicted in graphs (c) of Figure 2, the CIA does hold conditional

on X;, but not conditional on M;.
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Under the assumptions depicted in Figure 3, the CIA

holds. If additionally P(D;(Z; = 1,M; = m) > D;(Z; = 0, M; = m)|X;) = 1 (“partial”
monotonicity) and E[D;|Z; = 1,M; = m, X;| — E[D;|Z; = 0, M; = m, X;] # 0 (relevance)
hold, the LATE estimand

is identified.

Proof: See Appendix C.

2.5 Judging and Testing the Causal Assumptions

In sum, what are the implications of these results for applied researchers if they suspect that
Z; influences M;? We emphasize that only the restrictive sets of assumptions in Figure 2 (a)
and Figure 3 allow for IV identification by conditioning on X; and M;. Again, if researchers
think that the instrument may influence Y; through variables M;, they need to rule out
confounders that may affect M; and Y; either directly or through D;. We also emphasize
that researchers must not condition on mediators of the D; — Y; relationship. This causes
inconsistencies even when instruments are unconditionally valid. We now return to some of
the empirical applications that motivated our research and focus on the validity of various
robustness tests.

In general, robustness tests rely on determining “core” and additional control variables
such that 1) identification holds with core controls, but also with additional controls and 2)
there must be a chance that the robustness test fails if the assumptions are incorrect (Chen

and Pearl 2015; White and Lu 2011). Regarding condition 1), if one knew that one of the
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sets is incorrect a priori, then there would be no point in testing, as one would have to stick
to the other, correct set of controls anyways. If one allows for the fact that the IV impacts
on Y; directly over M;, then either the instrument is completely invalid — but one can engage
in a sensitivity analysis, as shown below —, or one needs to adjust for M,;.

For example, Wucherpfennig, Hunziker and Cederman (2016) acknowledge the possibility
of various post-instrument variables, and try to mitigate such concerns by adjusting for these
as a robustness test. They report that estimates under either adjustment set are similar. Such
a strategy is also undertaken by Kern and Hainmueller (2009) and Spenkuch and Tillmann
(2018). It turns out that this testing strategy is misleading. To see why, consider first graph
(a) in Figure 2. In this situation, M;-adjusted IV estimation identifies a LATE, whereas
unadjusted estimates will be different and will exhibit asymptotic bias. In situations like
graph (b) in Figure 2, Z; is not a valid instrument under either adjustment, and there is no
way to empirically test this graph. In graph (c), M;-adjusted IV estimates will differ, just like
in graph (a), but now the unadjusted estimator converges to a LATE, whereas the adjusted
estimates are biased. Accordingly, researchers cannot circumvent to commit themselves to
causal assumptions a priori in situations like these. Comparing adjusted and unadjusted
estimates is, in general, misleading: Both equal and unequal estimates may come from a
real-world process where the variable Z; is a valid instrument unconditionally, conditional
on M;, or in neither case.

A second approach is to inspect the correlation between Z; and M;. Researchers often
report that this association is not significant and that the instrument is therefore uncon-
ditionally valid. But when one acknowledges the possibility of a non-zero effect of Z; on
M;, the null hypothesis to be tested should be a composite null of there being an effect
(Rainey 2014; Hartman and Hidalgo 2018). Additionally, the bias introduced through post-
instrument variables increases as the instrument becomes weaker (as discussed below), which
such tests do not address. Additionally, even small effects of Z; on M; may be relevant when

the effect of M; on Y; is large. Our sensitivity analysis can be seen as an alternative approach
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to such a testing strategy because it incorporates the statistical uncertainty associated with
the estimate of the effect of Z; on M;. This is the price researchers have to pay when they
are not willing to definitely assume a zero effect.

One situation in which causal assumptions we have proposed are sharp enough that they
allow a test is graph (a) of Figure 2. In this graph, D; and M; are connected via the D; +
Z — M, path, and additional blocked paths running over the collider Y;. Accordingly, Z; (and
X;, as usual) d-separate D; and M;, and these two variables should therefore be conditionally
independent in the population. This can be tested by estimating E[D;|M;, Z;, X;] as a
function of M;, which is simply the first-stage that is often reported by researchers. However,
the focus normally rests on the partial association between the instrument Z; and D; (for
testing whether the instrument is weak), while the test we propose rests on the partial
association between the post-instrument variable M; and D;. Specifically, graph (a) of Figure
2 suggests that the coefficient of a linear regression of D; on M;, controlling for Z; and
X;, is zero (assuming correct regression specification and standard errors). If researchers
commit to this graph, they should use an equivalence test in order to provide evidence for
this zero association (Hartman and Hidalgo 2018), for example by determining whether the
90% confidence interval lies entirely within a range of associations that are negligible (at
a = 0.05). This test (which will we call the “diagnostic test”) may seem counter-intuitive
at first glance because it does not directly check for associations between the instrument
and other variables. However, it is the only test that can be justified by relatively weak
assumptions. We note that tests for ignorability of the treatment using proxies of unobserved
confounders take a similar indirect route (White and Chalak 2010).

What if the diagnostic test fails, i.e., one cannot reject the null of dependence? In this
case, at least one open path between D; and M; must exist, like in graphs (b) and (c) of
Figure 2, or as in Figure 3. Accordingly, researchers should consider a priori which of these

paths may exist.
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3 A New Sensitivity Analysis

We have shown that instruments for a causal effect may not be valid when they affect
other variables that affect the outcome of interest and are also driven by unobserved con-
founders. Specifically, conditioning on these other variables M; oftentimes will not achieve
identification. In this section, we propose a new semi-parametric sensitivity analysis for such
situations. Our approach is based on the fact that we can often assess the effect of the in-
strument on the M; variable, which provides useful information to bound the bias introduced
by the direct effect of the instrument. This goes beyond other approaches (Conley, Hansen
and Rossi 2012; Van Kippersluis and Rietveld 2018; Cinelli and Hazlett 2022) that cannot
use information on post-instrument covariates. An interesting corollary of our approach is
that for at least some choices of the sensitivity parameters, estimates are guaranteed to be-
come more robust (i.e., move further away from zero into the direction of the original point
estimate). Furthermore, we relax parametric assumptions (e.g., constant effects) that are
often made in the literature. We present two different models with different assumptions
that nonetheless lead to similar estimation approaches: First, a model for situations where
instrument, treatment, and post-instrument variable are binary. Then, there is only one
sensitivity parameter. Second, a model for a binary instrument, but possibly continuous

treatment and post-instrument variable. Then, there are two sensitivity parameters.

3.1 Model 1: Binary Variables

When Z;, D;, and M; are all binary, one can perform sensitivity analysis under relatively
weak parametric restrictions. The resulting estimation approach is a special case of our
second approach described in the next section and serves as a useful starting point.

Our model for Y; looks as follows:

Yi = py + BiDi + viM; + A\, X, + e (2)
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In this model, all causal effects vary across individuals in a fairly unrestricted fashion,
and so are random variables (see Imai and Yamamoto (2013) for a similar setup). X is a
vector of controls. We assume FEley;] = 0 without loss of generality. In Appendix D, we
show that when D; and M; are binary and further exogeneity and monotonicity assumptions

discussed below hold, the standard LATE conditional on X; can be expressed as

ElY;|Z; =1,X;] — E[Y;|Z; = 0, X}]
E[D;|Z; =1,X;] — E[D;|Z =0, X}]

(3)
E[|Mi(Z = 1) > My(Zi =0 .
iMi(Z: = 1) > Mi(Z: = Ol > prs o X = FDiZ =0, X

In this expression, the first term can be estimated by a standard two-stage least squares
regression that completely ignores M;, with outcome Y;, treatment D;, instrument Z;, and
controls X;. The second term is the asymptotic bias introduced by direct effects of the
instrument through M;. It consists of the average causal effect of M; on Y; (;) for units for
which Z; has an effect on M;. This is the unknown sensitivity parameter. It is multiplied by a
term that can be estimated via another standard two-stage least squares regression, but now
with outcome M;. Here, the numerator equals the average effect of Z; on M;, which (under
monotonicity) is equal to the share of units for which Z; has an effect on M;. The larger
this effect, the larger the bias. The denominator is the first-stage of the main regression
and equals the share of units for which the instrument has an effect on the treatment. The
smaller this quantity, the weaker the instrument is for D;, and the larger the bias through
direct effects is.

An important insight from this bias decomposition is that the association between Z; and
M; may be small, but the bias nonetheless large if the instrument is weakly associated with
D;. This is on top of other problems associated with weak instruments which occur in finite
samples (Bound, Jaeger and Baker 1995). However, it is also clear that if one chooses the

sign of the sensitivity parameter such that the bias term is of the opposite sign as the first
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term (the naive estimate), the resulting estimate will actually be in the same direction and
larger than the naive estimate. Accordingly, by incorporating sample information, original
estimates may become more robust for some choices of the sensitivity parameter.

While the causal model for Y; in equation 2 restricts interactions between the observed
variables, we make no assumption on the causal models for D; and M;, except that the
effect of Z; is “monotone” in both.? Therefore, this approach is quite general, although with

continuous X modeling will be necessary.

3.2 Model 2: Binary IV, Continuous Treatment and Post-Instrument

Variable

Many applications (including our two empirical analyses further below) deal with continuous
D; or M;, in which the previous bias decomposition is not valid. Here, one must instead
make further assumptions on the causal models for D; and M;. Consistent with our model

for Y;, we assume that

D; = pp + o Zi + mM; + Xy, X + e, (4)

Importantly, the causal model defined by all three equations is consistent with graphs

°0One could in fact allow for interactions between D; and M; in the model in equation
2. The interaction term would be a second sensitivity parameter that is multiplied with the
estimable share of “joint compliers”, P(D;(Z; = 1)M;(Z; = 1) > Dy(Z; = 0)M;(Z; = 0)).
See Blackwell (2017) for related estimation strategies when there are two IVs. Since applied
researchers using IV regressions rarely specify interactions between treatment and covariates
and allowing for them in our second sensitivity model increases complexity even more, we

do not pursue this here.
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(a) and (b) graphs in Figure 2 and additionally allows for M; to affect D;.1°

We make a series of further assumptions which are enumerated in Appendix D. We here
give an intuitive summary. The first assumption follows from graphs (a) and (b) in Figure
2. It requires that there are no unblocked back-door paths from Z; to any of D;, M;,Y;, and
that there is no direct effect of Z; on Y; save for the effects through D; and M;. The second
assumption states that Z; affects D; monotonically, which again is a standard assumption.
The third assumption requires Z; to also affect M; monotonically. Both monotonicity as-
sumptions restrict 7;, so that in most situations arguments for one of these to be plausible
also make the other plausible. However, they are logically independent (we expand on this
in Appendix D.5). Finally, for our second sensitivity model, we assume that the covariance
of the potential outcomes M (0), M (1) is non-negative. This assumption allows us to use the
data to bound a parameter and effectively decreases the width (but not the midpoint) of the
resulting bounds. If analysts are not willing to impose this assumption and they find a large
mean effect of Z; on M;, we suggest that they allow for larger values of the second sensitivity
parameter o, than is otherwise plausible. We discuss this in more detail in Appendix D.4.

Under these assumptions, we show in Appendix D that one can bound the weighted

causal effect of D, on Y, F M Bi|. The bias term becomes
E[O./Z‘ —|— 5171'1]
Elbivi] = E[0:]Eli] + cov (i, i) (6)

Here, F[§;] is the average causal effect of Z on M (equal to the share of M;-compliers),
which can be estimated from the data. E[y;] is the direct effect of M on Y, which is the first

sensitivity parameter.!! If treatment effects were constant, it would be the only unknown.

0In graph (c), a sensitivity analysis would only be necessary if Z; affected M, directly.
However, ; would then no longer describe the total effect of D;, which is of primary interest

in most analyses.

"To connect this to the first sensitivity model, note that with M; continuous, ¢; is con-
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However, if treatment effects vary and unobserved confounders impact on both M and Y, the
individual-level effects §; and 7; will be correlated, and the covariance term will be different
from zero (Glynn 2012).

For example, in the Vietnam draft study, if unobserved parental SES U; influences the
decision to attend college (M;) as well as later wages (Y;), it is plausible that lower parental
SES makes both effects in question larger, and thereby creates a positive covariance between
them. For example, for men with low parental SES, the effect of the draft on attending
college (d;) will be relatively large (because they are more likely to be at the margin when
it comes to deciding for or against college, Card 1999). And we would expect the effect
of college on earnings (+;) in this group also to be relatively large because it has a higher
potential to benefit (Brand and Xie 2010). Accordingly, cov(d;, ;) would be positive. Taken
together, this could lead to large bias, even if the constituent average causal effects are small.
Previous approaches to sensitivity analysis (Conley, Hansen and Rossi 2012; Van Kippersluis
and Rietveld 2018) assume that all causal effects are constants and therefore cannot address
biases that arise from such scenarios.

We show in Appendix D that one can use the data to bound this covariance term.
Intuitively, the bounds increase when the standard deviation of M and the effect of Z on
M’s standard deviation gets larger. The second sensitivity parameter then is the standard
deviation of v;, 0.,,. This quantity is in the same units as E[7;], and describes how much ~;
typically varies.

Finally, we can extend this sensitivity model to situations where the post-instrument

variable M may be measured with error. We discuss this in Appendix D.

tinuous as well so that P(§; = 0) = 0, and, due to monotonicity, E[y;| = E[vi|d; > 0].
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3.3 Choosing Values for the Sensitivity Parameters

To reiterate, the first sensitivity parameter E[v;] describes the direct effect of M; on Y, fixing
D;. We suggest that researchers reason about the sign and size of this parameter based on
the literature studying the effect of the M; on the Y; variable, and we illustrate this in our
applications below. Researchers should always inspect a range of values for this (and also
the second) sensitivity parameter.

The second sensitivity parameter, o,,, is the standard deviation of 7;. This parameter
therefore describes the spread of the unit-specific effects of M; on Y; that the first sensitivity
parameters averages.!? That is, this parameter measures effect heterogeneity. 0., 18 non-
negative and increasing it does not change the mean effect estimate, but rather increases the
uncertainty around it symmetrically, i.e., it effectively widens the confidence interval.

This parameter is usually not identified in empirical studies. However, existing empirical
studies may be informative insofar as they document effect heterogeneity. For example, if a
study reports the effects of M; on Y; to vary in a substantively meaningful way as a function of
another covariate, then this suggests that o, is relatively large, although it is not possible to
specify this quantitatively. We therefore suggest to inspect the existing literature for evidence
of effect heterogeneity. To get a better quantitative sense of this sensitivity parameter, one
can depart from the range the researcher specifies for the first sensitivity parameter (which
similarly can be informed by prior literature). If one assumes that these also represent the
minimum and maximum values for unit-specific causal effects and one further assumes a
certain shape for the distribution of these effects (e.g., uniform or Beta), then this yields a
specific value for o,,. We discuss this issue, including its implementation in our R package,
in more detail in Appendix D.3.

Quantitative robustness analysis does generally not yield clear qualitative answers on the

2The sensivitiy analysis developed by Imai and Yamamoto (2013) contains a similar

parameter.
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(non-)robustness of a finding, but rather invites researchers to reason about robustness as a
continuous concept. As such, researchers should not blindly insert any default values for the
sensitivity parameters, but rather choose them as to change their main inference and then
discuss, given substantive judgment and information from the prior literature as discussed
above, whether such values for the sensitivity parameters are plausible. We illustrate this

below.

3.4 Multiple Post-Instrument Covariates

In some situations, there may be a worry that there are in fact multiple potential post-
instrument M; variables. We analyze this formally in Appendix E. It turns out that if one
is willing to assume that the different post-instrument variables do not causally influence
each other, our sensitivity analysis can be extended relatively easily, in that one can use
sample information to bound estimates and each post-instrument variable is associated with
two sensitivity parameters, analogous to the single-variable case. However, such a causal
independence assumption is very strong and untestable given the discussed assumptions.
It seems unlikely that there ever could be cases where one would be unwilling to rule out
direct effects of the candidate instrument, yet would be willing to assume that these run over
measured variables that happen not to influence each other. If one does not impose such
an assumption, the analysis becomes practically intractable, as the number of sensitivity
parameters increases very fast.!> We suggest that a candidate instrument that plausibly has
multiple direct effects is generally not suitable for our sensitivity analysis that incorporates
measured M; variables. Instead, researchers need to resort to the sensitivity analyses by
Conley, Hansen and Rossi (2012) or Cinelli and Hazlett (2022) that do not incorporate

post-instrument variables, or abandon an IV strategy altogether.

13K.g., with just two post-instrument covariates, there are seven sensitivity parameters.
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4 An Illustration of the Proposed Methodology

We illustrate our new sensitivity analysis using data from Spenkuch and Tillmann (2018) as
well as from Carnegie and Marinov (2017). In the case of Spenkuch and Tillmann (2018),
we find that their original estimate is very robust to large values on the first sensitivity
parameter as well as to all but implausibly large values of the second. In the case of Carnegie
and Marinov (2017), we find a more nuanced picture: While their estimate is nominally not
very robust against negative effects of M; on Y;, it actually increases in size and significance
for substantively more plausible positive effects. Then, it is also robust to some heterogeneity

in these effects.

4.1 The Effect of Religious Composition on Support for National

Socialists

In Spenkuch and Tillmann (2018), one aim is to estimate the effect of Catholicism on the
vote share of the national socialists (NSDAP) in Germany in 1932. The data used is on the
county-level and comprises official election results and census data on the share of Catholics,
protestants, and other religions, as well as extensive socio-economic information like un-
employment rates in various demographic subgroups. Since the authors cannot rule out
unobserved confounders between religious composition and the Nazi vote share, they sug-
gest using the religious denomination (Catholic versus Lutheran or Calvinist) of a county’s
past ruler, measured in 1624, as an instrument. They discuss evidence that the historical
county denomination was largely idiosyncratic, except for a few observable factors X; for
which they adjust in their statistical analysis.

Spenkuch and Tillmann (2018, p. 9) then further assert that for this variable to be a
valid instrument, “it may influence voters’ decisions to support the NSDAP only through its
impact on covariates that are included in the regression”. We take this as an indication that

past religious composition Z; may have affected, for example, the economic situation in coun-
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ties in the 1930s, which we conceptualize as M; variables. Furthermore, it is plausible that
such economic variables also exerted a strong influence on the Nazi vote share. Accordingly,
the instrument would be valid if we faced the situation of graph (a) in Figure 2. Assuming
the IV is valid, Spenkuch and Tillmann (2018) estimate that a one percentage point increase
in the share of Catholics decreased the NSDAP vote share by about 0.27 percentage points.
This estimate is very large and precise (the standard error is about 0.03).

From this alone, it is clear that only strong deviations from the IV assumption can
change the substantive conclusions. We concentrate on one single M; variable measuring a
highly relevant economic fundamental: The county-level unemployment rate among blue-
collar workers. For illustrative purposes, we implement our diagnostic test. The resulting
90% confidence interval is [0.27,0.62], indicating a substantial association of the unemploy-
ment rate with Catholicism. One would therefore not be able to reject the null of a mean-
ingful association and therefore the strong assumptions in graph (a) in Figure 2 would seem
suspect.

Figure 4 plots our sensitivity analysis for the causal effect of Catholicism on NSDAP
vote. The X-axis depicts the first sensitivity parameter, the mean effect of unemployment
on the NSDAP vote share. The Y-axis depicts the effect estimate. The thick solid line is
the point estimate, while the thinner solid lines represent 95% confidence intervals whose
width depend on the value of the second sensitivity parameter. It is clear that the inference
is virtually unchanged when one considers different values of the first sensitivity parameter
in the range [—0.5,0.5]. These represent large effects. Accordingly, the analysis seems very
robust with respect to the first sensitivity parameter.

However, we see that when o,, approaches 1, the confidence interval covers 0, so that
the original inference is not robust. Is such a heterogeneous effect reasonable to expect?
Due to severe data limitations, the empirical literature on Weimar elections focuses on de-
scriptive inferences (King et al. 2008), so that it cannot directly inform our assessment on

the magnitude of o.,. Spenkuch and Tillmann (2018)’s own estimates for mean effects of
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Figure 4: Results from the sensitivity analysis, based on data from Spenkuch and Tillmann
(2018). X-axis depicts first sensitivity parameter E|[v,], the average effect of M; (blue-collar
unemployment) on Y; (county-level NSDAP vote share). Y-axis depicts estimate of effect of
interest of D; (Catholicism) on Y;. Thick solid line represents mean effect estimate. Thin
solid lines represent 95% confidence interval as a function of the second sensitivity parameter
oy,, effect heterogeneity in the effect of M; on Y;.

unemployment, which they do not claim are causal effects, are negative and at most as large
as the effect of Catholicism (i.e., at most —0.3). The contemporary literature on the causes
of extreme-right voting (Arzheimer 2009) finds positive effects of both individual unemploy-
ment and aggregate unemployment rates. This suggests some variability in effects. However,
we can calculate that even if the effect of unemployment rates would vary uniformly between,
say, —0.75 and 0.5 percentage points across counties, the implied standard deviation would

only be about 0.36. While this introduces some additional uncertainty, the main inference

is robust.

4.2 The Effect of Foreign Aid on Human Rights

In Carnegie and Marinov (2017), the authors exploit the “essentially random” rotation of

the presidency of the Council of the European Union across member states as a variable
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Figure 5: Results from the sensitivity analysis, based on data from Carnegie and Marinov
(2017). X-axis depicts first sensitivity parameter E|[v;], the average effect of M; (economic
openness) on Y; (human rights). Y-axis depicts estimate of effect of interest of D; (foreign
aid) on Y;. Thick solid line represents mean effect estimate. Thin solid lines represent 95%
confidence interval as a function of the second sensitivity parameter o,,, effect heterogeneity
in the effect of M; on Y;.

28



Z; that impacts on foreign aid D; transferred to countries that used to be colonies of that
presiding state. They use this variable as an instrument for aid to address the longstanding
and contested question of whether aid impacts human rights and democratic institutions of
a receiver country (Y;).

The paper carefully adjusts for institutional reforms that can be interpreted as pre-
instrument X; variables and, since the data set is a panel of countries over years, lags variables
to avoid “posttreatment bias” (Carnegie and Marinov 2017, 680). This can be interpreted
as trying to avoid situations such as in graph (c) in Figure 2. In their main analysis, they do
not adjust for any plausible post-instrument variables and find a very large, but short-lived
effect of foreign aid on a Human Rights index: An increase by $5 million increases the 0-14
index by 0.4 points (95% confidence interval [0.01, 0.8]).

However, in their discussion of the exclusion restriction, Carnegie and Marinov (2017,
A5, Table A18) mention several observed variables that may be influenced by the instrument
and test for their association with the instrument, assuming a null of zero association. As
discussed before, such an approach does not incorporate additional uncertainty and biases
that may occur.

We illustrate our analysis with the “economic openness” variable (defined as the sum of
national export and imports in terms of GDP per capita). Again, for illustrative purposes,
we inspect the diagnostic test that yields the 90% confidence interval [0.02,0.04]. This
implies that we cannot reject that a one-standard deviation (50 percentage points) increase
in economic openness is associated with an increase in aid by 50 x 0.04% = 20%, controlling
for other variables. This again seems substantial and we would therefore reject graph (a) in
Figure 2.

In Figure 5, we plot the sensitivity of their main inference with respect to economic

openness.'* The literature suggests that E[v;] is likely to be positive, but may also be highly

4Note that we are analyzing the original regression coefficient of the logged aid variable

(point estimate approx. 1.9).
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heterogeneous (Hill Jr. and Jones 2014). We see here that while the effect of foreign aid on
human rights becomes insignificant for negative values of E[v;], it actually becomes larger
and more significant for substantively more plausible positive effects of M; on Y;. This is
true for values of E[vy;] up to 0.02, which would correspond to a fairly large effect.In such
situations, the effect is also robust against small heterogeneity in the effect of M; on Y; (o0,).
Here, the widest confidence intervals correspond to a situation where o, = 0.002. This
seem rather small. For example, if the effect of M; on Y; varies uniformly between 0 and
0.04, the induced standard deviation is already about 0.012. In sum, the main inference
becomes actually stronger for plausible values of E[y;], but then is still sensitive to plausible

heterogeneity in ;.

5 Conclusion

Many applied researchers use instrumental variables in settings where they try to “control
away” a direct effect of the instrument on the outcome by adjusting for post-instrument
variables M;. In this paper, we explained why this strategy only works under restrictive as-
sumptions. Using causal graphs and potential outcomes, we highlighted the asymmetric role
of pre- and post-instrument covariates: While adjustment for the former is often necessary
and unproblematic, statistical control for the latter has to be taken with extreme caution.
We showed that with direct effects of the instrument through M;, some local average treat-
ment effects may be identified, but we also highlighted various sources of asymptotic bias.
We discussed the limited value of existing robustness tests and provided a more suitable test
of a specific set of identification assumptions. Finally, we introduced a sensitivity analysis as
an alternative and illustrated it using the IV analysis in Spenkuch and Tillmann (2018) and
Carnegie and Marinov (2017). Here, it became clear that researchers need to reason about
both mean direct effects of the instrument as well as their variability.

We conclude by providing a checklist for applied researchers that want to use a (potential)
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instrumental variable that may have a direct effect on the outcome through another variable:

1. Based on substantive knowledge, determine which of the graphs discussed in this paper
seems plausible for your research design. Specifically, be clear about which variables
are confounders X; that influence Z;, D;, and Y;, and which variables M; are driven by

Zi or l)Z

2. If M; is a mediator and not directly driven by Z;, proceed with standard estimation

routines like 2SLS; where you condition only on X;.

3. If your assumptions are equivalent to graph (a) in Figure 2, implement the diagnostic

test by providing evidence that D; and M; are independent conditional on Z;.

4. If the test does not reject the Null, reconsider your assumptions. Only the assumptions
in Figure 3 allow for conditional dependency between D; and M; and identification

based on adjustment for X; and M;.

5. If prior knowledge or the diagnostic test leads to the conclusion that Z; directly influ-
ences M; and that the unobserved confounder also influences M; (as in graph (b) in
Figure 2), identification is not possible. Perform estimation conditional only on X; and

then use our sensitivity analysis to assess whether substantive conclusions still hold.

Finally, we reiterate a point made, inter alia, by Conley, Hansen and Rossi (2012): A
strong but imperfect instrument may be preferable to an exogenous, but weak instrument.
The strength of an instrument is, of course, estimable. When a central post-instrument vari-
able M; is measured, our method also allows researchers to better assess the consequences of
imperfections of their instrument, without the need to rely completely on a priori judgments

about exogeneity.
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A Papers Using Instrumental Variables (Survey)

Table A1 presents the counts of articles taken from the American Political Science Review, the American
Journal of Political Science, and the Journal of Politics that use instrumental variables in their empirical
analyses for the period from 2010 to the present. For each of the papers found, we have coded whether
there is an explicit discussion regarding the exclusion restriction and among those where there is,
whether there is a covariate being included as a control to satisfy such restriction. The table shows
that 75.12% of the papers discuss the exclusion restriction and 19.02% include a covariate to address
potential violations to this assumption. When dividing the sample into two periods, one starting in
2010 up to 2014 and a second one for papers published in 2015 and after, we see that the percentage of

papers that apply the fix has increased, from 14.1% to 22.05%.

Table Al: Exclusion Restriction and Added Covariates (Counts)

Exclusion restriction Added covariate Total articles

2010-2014 58 11 78
[74.36] [14.10] [100]

2015-2020 96 28 127
[75.59] [22.05] [100]

2010-2020 154 39 205
[75.12] [19.02] [100]

Exclusion restriction denotes the number of articles that explicitly discuss exclusion restric-
tions as identification assumptions in the instrumental variable analysis. Added covariate
denotes articles that include a control variable to address a violation of the exclusion re-
striction. Total articles is the number of articles using instrumental variable techniques.
Percentages are taken over total articles in the period and are in brackets.

B Causal Graphs and IV Identification Using Potential Out-
comes

Causal graphs, specifically directed acyclic graphs, consist of nodes, which visualize variables, and edges,

which are usually directed arrows from one node to another. A path is any consecutive sequence of
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edges. In line with Pearl (2009), we view causal graphs as representations of a nonparametric system
of structural equations that describes cause-effect relationships. That is, nodes represent observable
or unobservable features of units of interest, and an edge or arrow from one such node to the other
communicates the assumption that the one variable causally affects the other variable in the population
of interest. To be precise, a causal model G consists of exogenous background variables U;, usually

assumed to be unobserved, observed endogenous!®

variables V;, and structural (causal) functions f, for
each endogenous variable. These functions are deterministic in the sense that if we knew all relevant
inputs of f, for an endogenous variable, we could precisely determine the value of this variable. Since U;
is assumed to be unknown, the observable variables V; become random variables. Whenever we want to
indicate that observable variables are driven by an unobserved confounder, we will use dashed nodes for
edges emanating from this confounder. This is equivalent to assuming that the “structural errors” U;
(i.e., all unobserved causes) of the confounded variables are dependent. Throughout, we discuss acyclic
graphs, that is, graphs in which no variable may have an effect on itself. Finally, we use upper-case

letters to denote random variables, and lower-case letters to denote realized or fixed values of these

variables.

B.1 Deriving Independencies from Causal Graphs

To understand in which situations an instrument is (conditionally) valid, it is necessary to derive
independence relationships from the causal graph the researcher assumes. Throughout, we do so by
using an easy yet powerful tool called d-separation (Geiger, Verma and Pearl 1990). In a given graph,

a path p is said to be d-separated (or blocked) by a set of nodes Z; if and only if

1. p contains a chain X; — M; — Y; or a fork X; < M; — Y, such that the middle node M; is in Z;,

or

2. p contains an inverted fork (or collider) X; — M; < Y; such that the middle node M; is not in Z;

and such that no descendant of M; is in Z;.

5Here, the word “endogenous” simply means “explained in the model”.
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A set of variables Z; is then said to d-separate X; from Y; if and only if Z; blocks every path from a
node in X; to a node in Y;. Importantly, d-separation implies conditional independence, which we write
as X; 11 Y;|Z;. This means that once we know the value of Z;, X; does not predict Y; and vice versa. In
addition, we employ graphoid axioms (Dawid 1979) to prove our results.

The fact that conditioning on a collider of two variables (or its descendant) makes these variables
dependent is central to understanding the failure of certain IV strategies, but may be counterintuitive,
so that an example is helpful. Consider two independent binary variables A and B and a random
variable C' that is the sum of A and B. Accordingly, C' can take on the values {0, 1,2}, and is a collider
variable, with A and B pointing into it. A and B may be random coin flips, so clearly knowing the value
of A does not help in predicting B. However, conditioning on the collider C' means that we are told its
value, for example 1. The question then is whether A and B have become dependent, that is, whether
knowing C' and A now tells us anything about B. The answer is a clear yes: Knowing the result C' is 1
and, for example, that A is 0, we know for sure that B must be 1. Put differently, knowing the result
of a process (C') and the value of one of its independent inputs (A) also lets us predict the value of the
other input (B). The same mechanics apply if we happen to know the realization of a descendant of C.
For example, let D be a variable that takes on the value 1 when C equals 1, and is 0 otherwise (so that
it is a binary proxy for C'). Knowing that D equals 1 and that A equals 0 also leads to the prediction
that B equals 1.

To give a more elaborate example of d-separation, consider Figure 1 in the main text. For the
moment, assume that we could measure U; and that we were interested in its dependency with Z; . In this
case, one would find four paths between the instrument Z; and U;: Z; — D; < U;, Z; + X; — D; + U;,
Zi — D; =Y, < U;, and Z; < X; — Y; < U;. The first two paths contain the variable D; as a collider
and so are unconditionally blocked. The last two paths contain Y; as a collider and are therefore blocked
as well. In summary, all paths between Z; and U; are unconditionally blocked, so that Z; and U; are d-
separated and Z; 1L U; holds. Put informally, this conveys the notion that a valid instrument needs to be
independent from unmeasured causes of Y;. Consequently, if one could measure U; for each individual, a

linear regression of it on Z; should yield a coefficient of zero (asymptotically and under the assumption
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that the regression is correctly specified).

B.2 From Graphs to Potential Outcomes

Having discussed the basic properties of causal graphs, we now introduce potential outcomes and the
causal effects of interests. As usual, the identification assumptions need to be stated in independence
relationships of observed and counterfactual variables. Following Pearl (2009), we connect causal graphs
and potential outcomes by defining the latter quite naturally as solutions to the structural model that
researchers assume. The potential outcome of variables Y; € V; when variables X; € V; are set to z is
denoted Y;(X = z) and is given by Y;(G.). G, stands for a manipulated version of the original causal
model G in which all functions fx, are deleted and replaced by constants x (Pearl 2009, 204).

To give a simple example, consider the graph D; — Y; <— U;. In this graph, the potential outcome
of Y; in unit ¢ when D, is set to d is

YD = d) = f,(d, )

which, since d is fixed, is a random variable only because it is a function U;, which stands for all
unobserved causes of Y;. It follows immediately that D; 1LY;(D; = d) (“ignorability”) holds, because D;
and U; are d-separated unconditionally (since Y; is a collider that blocks the only path between D; and
U;). In DAGs, ignorability of the treatment can also be evaluated by simple graphical criteria like the
adjustment criterion (Shpitser, VanderWeele and Robins 2010). However, we resort to this structural
definition of counterfactuals to make explicit the exact reasons for why IV identification may fail, and
because such general graphical criteria for IV problems do not exist.

Our approach is fully compatible with previous results that used counterfactuals to communicate
causal assumptions. Approaches that define potential outcomes as byproducts of structural equation
are also becoming standard in econometrics, see for example Imbens and Newey (2009), Chernozhukov
et al. (2013), and especially White and Lu (2011), who also employ causal graphs. It should also become
clear that potential outcomes are indeed a generalization and refinement of the “structural error” that

plays a central role in econometrics. Again, this error term in a structural or causal equation stands
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for all unobserved factors that influence the outcome when observed determinants are held fixed, and
it should not be confused with the regression error. The latter stands for unit’s deviations in Y; from

its conditional mean.'6

C Proof of the Proposition

We first introduce some useful properties of conditional independence:
Lemma 1. (Dawid 1979) If X; LY;|Z; and U; is a function of X;, then 1) U; \LY;|Z; and 2) X; 1.Y;| Z;, U;.
Lemma 2. (Contraction, Pearl (2009)) X; \LY;|Z; and X; UW,;|Z;,Y; imply X; 1LY;, W;|Z;.

Lemma 3. Z;, 1LU;|X; implies Z; \L f(U;), g(U;)| X, where f,g are arbitrary functions.

Proof. Z; ILU;| X; implies Z; 1L f(U;)| X; as well as Z; 1LU;| X;, f(U;) by lemma 1. The latter then similarly
implies Z; 1L g(U;)| X5, f(U;). By contraction, we then have Z; 1L f(U;), g(U;)| X. O

We can now prove the statements in the main text. Throughout, we will assume there are additional

observed confounders X; influencing all observed variables.

Proof of the Proposition. In graph (a) of Figure 2, we have Y;(D; = d) = f,(d, M;, X;,U;) and D;(Z; =
z) = fa(z,X;,U;). By d-separation, the graph implies Z; 1LU;|X;, M;. By Lemma 3, this implies
Yi(D; = d),Di{(Z; = 2)1L7Z;|X;, M;. Identification of the X, M;-specific LATE then follows as in
Angrist, Imbens and Rubin (1996).

In graph (b) of Figure 2, Y;(D; = d) = f,(d, M;, X;,U;) = f,(d, fm(Z;i, Xi,U;), X;, U;), which depends
on Z;. Conditioning on X; does not block this dependency. Conditioning on X;, M; makes Z; and U;
dependent, so the CIA is generally violated. However, D;(Z; = z) = fa(z, X;,U;), and D; 1LU;|X; by
d-separation, so Z; Il D;(Z; = z)|X; holds and the ATE of Z; on D; is identified.

In graph (c) of Figure 2, Yi(D; = d) = f,(d, X;,U;) and D;(Z; = z) = fa(2,X;,U;). d-separation
implies Z; L U;| X;, so by lemma 3, Y;(D; = d), D;(Z; = z) 1L Z;| X;. However, conditioning on M; makes

Z; and U; dependent, because we are conditioning on a descendant of a collider.

16See Imbens (2014) for a discussion of this issue in an IV context.
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In Figure 3, we have

Yi(D; =d),Di(Z; = z, M; = m) 1L Z;| X;, M;

(CIA.2)

First, in this graph, Y;(D; = d) = f,(d, M;, X;,U;) and D;(Z; = 2z, M; = m) = fa(2,m, X;,U;). By

d-separation, we have Z; 1L U;| X;, M;. Lemma 3 then implies CIA.2. Additionally, we assume
P(Di(Z; =1,M; =m) > D;(Z; = 0, M; =m)) = 1 for all m (partial monotonicity)
E[D;|Z; =1, M; = m, X;] — E[D;|Z; = 0, M; = m, X;] # 0 for all m (relevance)

Consider the X;, M;-adjusted Wald estimator

Under the above assumptions, the numerator evaluates to

EY,(D =1) = Y{(D = 0)|Di(Z; = 1, M; = m, X;) > Dy(Z; = 0, M; = m, X;)]x

The first step follows from

for z = 0,1 and CIA.2. The second uses the fact that D;(Z; =1, M; = m) — D;(Z; = 0, M; = m) is

either one or zero by partial monotonicity.
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The denominator is

P(Di(Z; =1,M; =m) > Di(Z; = 0, M; = m)|M; = m, X;)

The first step follows from consistency and CIA.2, and the second step follows from partial monotonicity.

Accordingly, the Wald estimator evaluates to

D Derivation of the Sensitivity Analysis

The structural models in equations 2—5 suggest estimation of all regression functions using linear models
where the control variables X; enter separately. Therefore, we leave the conditioning on X; implicit
in the following; all variables can be thought of as having partialled out their correlation with X;.
Consistent with this, we also assume that our sensitivity parameters are independent from X; (see
Knox, Lowe and Mummolo (2020, p. 11) for a similar approach).

Sensitivity model 1, in contrast to model 2, implies no assumptions on the functional form of
E[D;|Z;, X;] and E[M;|Z;, X;]. Then, two-stage least squares regression nonetheless is robust (at least
if the true values of the sensitivity parameter were known) (Vansteelandt and Didelez 2018, Proposition

3).

D.1 Model 1: Binary Z;, M;, D;

In addition to the model in equation 2, we here assume
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Z; LY;(d,m), Di(z), M;(z) for all z,d,m (7)

Under these assumptions, we have

E[Yi|Z; = 1] — E[Y}|Z; = 0] =

E[@'(Di(zi = 1) - Dz‘(Zz' = 0))] + E[’Yz(Mz(Zz = 1) - Mi(Zi = 0))] =

The first equality follows from model equation 2 and assumption 7. The second equality follows

from the monotonicity assumptions 8 and 9.
By the exogeneity assumption 7, P(D;(Z; = 1) > D;(Z; = 0)) and P(M;(Z; =1) > M;(Z; = 0)) are

identified as F[D;|Z; = 1] — E[D;|Z; = 0] and E[M;|Z; = 1] — E[M;|Z; = 0]. Combining this, we have
that

E[3;|Di(Z; = 1) > Di(Z; = 0)] =
E[Y;|Zi:1]_E[Yi|Zi:O] E[’yi|Mi(Zi:1) >Mi(Zi:0)](E[Mi|zi:1]—E[MZ~|ZZ~:0]) (11)

E[Di|Z; = 1] — E[Di|Z = 0] E[Di|Z; = 1] — E[Di|Z; = (] '

Here, E[3;|D;(Z; = 1) > D;(Z; = 0)] is the LATE of interest, 5[[2;?‘|ZZZ',::11}]1%[%|_|Z§Z%]] is a standard Wald
(two-stage least squares) estimator with outcome Y;, treatment D;, and instrument Z;, E[v;|M;(Z; =

1) > M;(Z; = 0)] is the sensitivity parameter, and
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E[M;|Z; = 1] — E[M;|Z; = 0]
ED)\Z, = 1] — E[D,|Z: = 0]

can be estimated by a two-stage least squares regression with outcome M;, treatment D;, and

instrument Z;.

D.2 Model 2: Binary Z;, Continuous M;, D;

Here, our assumptions in addition to the model in equations 2, 4, and 5 are

Zi W(Bi, iy iy iy 0,y €14y €27, €3;) (12)
Plo; + 6;m > 0) = 1 (13)
P, >0)=1 (14)
cou(M;(0), Mi(1)) > 0. (15)

Under these assumptions, we have

EY|Z; =1] — E[Y}|Z; = 0] = (16)

E[Bi(a; + 0;mi)] + E[divi].

This holds because Z; is independent from all causal effects and the error terms.

E[(Si%']

is the bias term we need to bound.
Note that with Model 1 (with binary D;, M;), we would have E[§;v;] = E[y;|0; = 1]P(6; = 1) =
E[v|6; = 1|(E[M;|Z; = 1] — E[M;|Z; = 1]). This explains why we have only one sensitivity parameter

in Model 1, whereas the next section shows that we have two unknown parameters in Model 2.
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Using similar reasoning as before, we also have

E[Di|Z; = 1] — E[D;|Z; = 0] = E[o,; + 6;m)) (17)

and

E[M;|Z; = 1] — E[M;|Z; = 0] = E[6;]. (18)

D.2.1 With Measured M;

Rewrite the bias term as

E[6:7] = cov(di,v:) + E[6:] E[vi]. (19)

In the second term, E[J;] is point-identified as F[M;|Z; = 1] — E[M;|Z; = 0], while E[v;] will be a
sensitivity parameter.

Further rewrite

cov(6;,7;) = cor(0i, i) 05,0, (20)

In this latter term, we can decompose oy, as

Vvar(M;(1)) + var(M;(0)) — 2cov(M;(1), M;(0)). (21)

The variance terms are nonparametrically point-identified as var(M;|Z; = z). Regarding the co-
variance, intuition might suggest that monotonicity (M;(1) > M;(0)) implies that it is positive, but
one can create joint distributions of (M;(1), M;(0)) where this is not the case. However, the Frechét-
Hoeffding bounds (e.g. Aronow, Green and Lee (2014)) for this quantity using the marginals are not
sharp, because the monotonicity does in fact improve the lower bound. Very recent work character-
izes this lower bound under monotonicity (Nutz and Wang 2022). Since we are not aware of research

on how to estimate this bound, especially with covariates, we make the simplifying assumption that
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cov(M;(1), M;(0)) > 0. We evaluate the consequences and the plausiblity of this assumption in section

D.4. Using this assumption, an upper bound for equation 21 is

Vvar(M;|Z; = 1) +var(M;|Z; = 0). (22)

Further using —1 < cor(d;,v:;) < 1, we can bound equation 20 as

—/ (var(M;|Z; = 1) 4+ var(M;| Z; = 0))o,,

< cov(d;; i) < (23)

\/(var(Mi|Z,~ = 1) +var(M;|Z; = 0))o,,,

where o,,, the standard deviation of the direct causal effect of M; on Y;, is the second sensitivity
parameter.

Collecting terms and rearranging, we have

EY;|Z; = 1] — E[Y:|Z; = 0] 1 "
EDi|Z: = 1| — BE|Di|Z; = 0] E|Di|Z; = 1] — E[Di| Z; = 0]

{(E[M;|Z; = 1] — E[M;|Z; = 0)) E[v;] + \/var(M;|Z = 1) +var(M;|Z = 0)o., }

Oéi+5iﬂ'i

< FEF|l—mmm8| < 24
B [E[Oéi+5ﬂi]ﬁl] - (24)

EYiZ =1 - EYi|Z =0] 1 .

E[D;|Z; =1] = E[D;|Z; =0 E[D;|Z; = 1] — E[D;|Z; = 0]

{(B[M;|Z; = 1] — E[M;|Z; = 0)) E[v;] — \/var(M;|Z = 1) +var(M,;|Z = 0)o.,},

. BIMi|Zi = 1) = E[Mi|Z; =
1

EDiZ =1 = E\Di|Z, = 0] is positive. If it is negative, the inequality signs reverse.

D.2.2 With Mismeasured M;

Often researchers are made aware of potential violations of the exclusion restriction after initial data

collection. Although they then might gather some measure of a candidate M; variable, it may well be
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affected by measurement error. It turns out that such an error-ridden measure is still informative and
can be used for sensitivity analysis.
We formalize this by complementing the model in equations 2 - 5 with a model for M}, the observed

measure of the now unobserved M;:

and by assuming Z;, M;1Ln; and E[n;] = 0. This is “classical” measurement error. We show here
that the resulting estimator for the bounds stays the same, although measurement error does indeed
widen the bounds compared to a situation without measurement error.

As before, we want to gain information on the bias term (equation 19) from the data. E[);] remains
identified under the measurement model in equation 25 and the stated assumptions on the measurement
error: E[M*|Z =1|—E[M}|Z =0] = E[M;+mn;|Z = 1] — E[M;+mn;|Z =0] = E[M;|Z = 1] — E[M;|Z =
0] = Ed;].

It further turns out that the variances var(M;(z)) are not point-identified anymore, although they
can be bounded from above by the same quantities as in the case without measurement error. Accord-

ingly, the resulting bounds for the sensitivity analysis do not change. To see why, consider

var(M;(2)) = var(M;|Z; = z) = var(M} —n;|Z = z) =
var(M}|Z = z) +var(n;|Z = z) — 2cov(M} ;| Z = z) = (26)

var(M?|Z = z) +var(n;) — 2cov(M,n;|Z = z).

Regarding this last term, we have

cov(M}?,mi|Z = z) = coo(M; +ni,mi|Z = 2) =
(27)
cov(M;,m;|Z = z) + var(n;|Z = z) = var(n;).
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Accordingly,

var(M;(2)) = var(M}|Z = z) —var(n;) < var(M}|Z = z). (28)

This bound could be improved upon if we could improve the trivial zero lower bound for var(n;).
However, it is only possible to bound var(n;) from above using var(M;).

In sum, equation 28 shows that the observed conditional variance of the measurement is equal to or
larger than the marginal variance of the potential outcome of the actual M; variable. If measurement
error is large, the empirical estimate will be far away from zero, even though the true marginal variance
might be close or equal to zero. This is the information loss incurred by the measurement error.

Accordingly, the bounds in equation 24 remain valid, substituting M} for M.

D.3 Deriving Values for the Second Sensitivity Parameter

We assume the researcher has specified a range of values for E[v;] as [a, b]. If one then assumes that the
unit-level causal effects also are within this range, then one can derive values for o, if we also assume
a specific shape for the distribution supported on this range.

We suggest a four-parameter Beta distribution as the class of distributions for the unit-specific causal

effects. The distribution has parameters («, [3,a,b). The general formula for its standard deviation is

\/ Oéﬂ(b — a)2 (29)

(a+B8)*(a+8+1)
For illustrative purposes, Figure Al shows three examples of different distributions:
1. Little variance / bell curve. o« = 3 = 4. If unit-causal effect varied between 0 and 1, then this
distribution would imply a standard deviation of the causal effects of approx. 0.17.

2. Medium variance / uniform distribution. @ = g = 1. If unit-causal effect varied between 0 and 1,

then this distribution would imply a standard deviation of the causal effects of approx. 0.29.

3. High variance. = f = 0.5. If unit-causal effect varied between 0 and 1, then this distribution

would imply a standard deviation of the causal effects of approx. 0.35.
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Figure Al: Three examples of possible Beta distributions of unit-level causal effects sup-
ported on [0, 1]. X-axis depicts unit-level causal effect, y-axis depicts its density.

Our R package contains a function to compute the standard deviation given the four parameters.
Again, these three specific distributions are just examples to give researchers an idea of how large the
sensitivity parameters might be in principle. As discussed in the main text, we suggest to explicitly
investigate values of the sensitivity parameter for which main inferences do not hold. Given information
from secondary literature on the effect of M; on Y; as well as these possible shapes of the distribution
of the unit-level causal effects, researchers should then assess whether such an extreme value of the

sensitivity parameter appears plausible.

D.4 Understanding cov(M;(1), M;(0)) > 0

We here show how to understand the assumption that cov(M;(1), M;(0)) > 0, how to detect possible

violations to it, and how to incorporate those into the sensitivity analysis.
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First, the assumption that cov(M;(1), M;(0)) > 0 decreases the width of the bounds for the causal
effect of interest, but has no effect on the location of the bounds. To see why, consider again our

expression for cov(d;,7;), which is one part of the bias term:

cov(6;, ;) = cor(0;,i)05,04,

The standard deviations are always non-negative. The correlation is unknown and between —1 and
1. Therefore, this covariance between the causal effects is always in the interval [—os,0.,, 05,0,,]. Our
analysis bounds o5, from above using the data. Given values of the sensitivity parameter o,,, this
results in bounds centered at 0 that are “added” to the mean estimate (which already may include bias
adjustments from the first sensitivity parameter).

The empirical bound for oy, is based on writing it as

Vovar(M;|Z = 1) +var(M;|Z = 1) — 2cov(M;(1), M;(0)).

Clearly, when the covariance is positive, this term becomes smaller, and the width of the resulting
bound [—05,0,,, 0s,0.,] becomes smaller, too.

Second, to illustrate the relationship between the monotonicity assumption M;(1) > M;(0) and
bounds on cov(M;(1), M;(0)), consider Figure A2. On the X- and Y-axis, we have values for potential
outcomes M;(0) and M;(1), respectively. Without loss of generality, we assume here that these are
between 0 and 1.

The dashed diagonal line graphs the monotonicity constraint M;(1) > M;(0). We then plot the do-
mains of two different joint distributions for M;(1), M;(0). In both cases, M;(0) is uniformly distributed
on [0,0.3], and therefore has a mean of 0.15. The domain of M;(1) differs between the two distributions,
but it is always a finite closed interval. The dotted squares indicate the domains of all possible joint
distributions given the domains of the marginal distributions.

The solid, piecewise linear function in the bottom left corner determines M;(1) as follows:
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0.4 — M;(0) if 0 < M;(0) < 0.2
M;(1) =

M;(0) if 0.2 < M;(0) < 0.3,

Figure A2: Understanding the relationship between the monotonicity constraint and the
covariance between potential outcomes. Solid lines are the domains of two different joint
distributions of M;(0), M;(1) with negative covariance. Dotted lines indicate the domain of
all possible joint distributions associated with each of these two cases. The dashed diagonal
graphs the monotonicity constraint.

In this model, the average causal effect of Z; on M; is While the downward sloping part of

1
the function contributes to a negative covariance, it cannot cross the monotonicity constraint, and
the upwarding sloping part of the function then increases the covariance. Clearly, the monotonicity
constraint restricts the covariance from becoming very negative.

To make the covariance more negative, one could shift M;(1) upwards so that the monotonicity
constraint is without consequence. The second line towards the top plots such a function (M;(1) =
0.8 — M;(0)). Since the distribution of M;(0) does not change, the average causal effect here is much
larger (0.55)

This suggests that while the monotonicity condition does not ensure that cov(M;(1), M;(0)) is ac-

tually positive, it suggests that a negative covariance is associated with large positive mean effects of

A17



Z; on M;.'7

In sum, while the cov(M;(1), M;(0)) > 0 assumption used to bound oy, from above may not auto-
matically hold under our monotonicity assumption, violations of it are likely to occur together with a
large mean effect of Z; on M;. The latter is identified from the data and directly incorporated into our
sensitivity analysis. If analysts are not willing to impose cov(M;(1), M;(0)) > 0 and they find a large
mean effect of Z; on M;, we therefore suggest that they allow for larger values of the second sensitivity
parameter o,, than is otherwise plausible. This will increase the width of the bounds [—os,05,, 05,0,
and can therefore to some degree address concerns stemming from the fear that the covariance between

the potential outcomes is negative.

D.5 Relationship Between Different Monotonicity Assumptions

To assess the relationship between the traditional monotonicity assumption and partial monotonicity,
consider the case of binary Z; and binary M;, and no covariates. In this case, a saturated structural

model for D; without any functional-form assumptions can be written

D; = o+ B1iZ; + BoiM; + B3, Z; M; + €;

where a = E[Di(Z; = 0,M; = 0)], pr; = Di(Z; = 1,M; =0) — Dj(Z; = 0, M; = 0), Bo; = Di(Z; =
0,M; = 1)— Dy(Z; = 0, M; = 0), and Bs; = D;(Z; = 1, M; = 1)— D;(Z = 0, M; = 1) — (Dy(Z; = 1, M; =
0) — Di(Z; = 0, M; = 0)).

Monotonicity requires D;(Z; = 1) > D;(Z; = 0) for all i, which restricts the total effect of Z; on
D;. This is equivalent to stating that fy; + Bo;M;(Z; = 1) + B3 Mi(Z; = 1) > Bo;M;(Z; = 0) for all i.
This restricts the joint distribution of (B, 2, Bsi, Mi(Z; = 0), M;(Z; = 1)). Note that the M;(z) will
generally be associated with the coefficients when M; and D; are confounded, but this is ruled out by

the assumptions we present to identify the new LATE.

17Tf the mean effect of Z; were negative, the monotonicity constraint would reverse and

would restrict the covariance from becoming too positive when mean effects are small.
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Partial monotonicity is equivalent to the requirement that §y; + 83;m > 0 for all m and i, where m
is constant. This restricts the direct effect of Z; on D; not going through M; to be in the same direction
for all m. This restricts the distribution of (Sy;, 83;). In theory, there could be fine-tuned distributions
of (B, Bai, B3i, Mi(Z; = 0), M;(Z; = 1)) where monotonicity holds but partial monotonicity does not.
However, it seems natural to assume that the restrictions on f3y;, 83; also hold when suitable restrictions

on (i, Bai, Bsi, Mi(Z; = 0), M;(Z; = 1)) are plausible.

D.6 Implementation & Statistical Inference in the Sensitivity Analysis

For implementing the sensitivity analysis, we need to make a number of choices for estimation and
inference. As stated before, and consistent with most IV applications, estimation of the mean differ-
ences in equation 24 can be pursued using two-stage least squares. For the variance terms, we pick
corresponding linear conditional variance models (Shalizi 2019, 217). We first estimate auxiliary mean

regressions

EM;|Z;, Xi] = G+ (2 + (X, — Xi)CZS

where (i, (, are scalars and (3 is a vector, and generate residuals r; = M; — E[MZ-|Z1»,X1-]. We then

estimate var(M|Z = z) via

E[Tz'2|Zi> X =C6U+GZi+ (Xi— Xi)G

where (4, (5 are scalars and (g is a vector. Under this model, we have

var(M|Z = z) = /§4 + (52 + (2 — X)) CGedz = G+ G52,

so that our estimate for var(M|Z = 1) + var(M|Z = 0) is 2¢4 + (52.
Finally, we use the nonparametric (paired) bootstrap to estimate the sampling distribution of the
resulting estimator for the bounds. Young (2019) has recently documented the widespread presence of

non-IID errors in two-stage least squares regressions and suggests the bootstrap to improve statistical
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inference relative to standard robust covariance estimators.

Specifically, we implement the “bootstrap-c¢”, which involves drawing from the original sample with
resampling and storing point estimates E of the bounds based on this sample. We base statistical
inference on both “percentile” and the adjusted, “basic” bootstrap confidence interval (Davison and
Hinkley 1997, 193-202), using the R package boot.

We find that the percentile method very closely replicates the results of Spenkuch and Tillmann
(2018). In our replication of Carnegie and Marinov (2017), we find that an approach that uses a simple
(non-clustered) bootstrap, percentile confidence intervals, and that removes outliers from the bootstrap
distribution according to the standard boxplot definition (i.e., samples that are more than 1.5 inter-
quartile ranges below the 25% or above the 75% quantile) also closely replicates the original results.
Some remaining minor discrepancies may be due to slight changes in the sample composition, since we
have to delete some observations for which measures of M; are not available (as explained in the main
text, Carnegie and Marinov (2017) did not adjust for M; in their main analysis, but they evaluated
its association with the instrument). All in all, this suggests that our approach can closely replicate
results from standard two-stage least squares implementations, and may be additionally more robust

to outliers as suggested by Young (2019).

E Multiple Post-Instrument Covariates

Figure A3: Graphs with K = 2 post-instrument covariates. Left graph: Particular causal
dependence between post-instrument covariates. Right graph: Assumption of causal inde-
pendence that is used in the sensitivity analysis.
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In this section, we analyze the case of K > 1 post-instrument covariates. Figure A3 shows example
DAGs where K = 2. In the left graph, one allows for “causal dependence” between Mi; and M;,,
specifically the latter influencing the former. We show that in such cases, a sensitivity analysis becomes
practically intractable. The right graph shows an example where one assumes “causal independence”
between the the post-instrument covariates. We show that under such an assumption, our proposed

sensitivity analysis can easily be generalized.

E.1 Consequences of Causal Dependence of Post-Instrument Covariates

Consider first a system of structural equations with varying coefficients which implies the left graph in

Figure A3, leaving X, implicit:

Y; = py + BiD; + 1My + vaiMai + A\ X + . (30)
D; = pp + a; Z; + 7 My + mo Mo + )\,QiXi + €2 (31)
My = pan + 012; + 0; Ma; + )\Igl'Xi + €3i- (32)
My; = parz + 02 Z; + Ny X; + € (33)

This is a natural generalization of the model in the main text, with the exception that one commits
to a particular causal ordering where Mjy; influences My;. 6; is the individual-level causal effect that
corresponds to this influence.

Under a suitable generalization of assumptions 12-15, the bias term then becomes

E[61i71i + 025721 + 62:0i714).-

Here, E[01;71; 4 d2i72i] corresponds to the total effect of the instrument through the post-instrument
covariates if My; and My; were “causally independent”, that is, were not influence to each other. As
shown in the next sections, the presence of these terms leads to a generalization of sensitivity analysis

with one post-instrument covariates such that each post-instrument covariate is associated with two
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sensitivity parameters as before (a mean effect on Y; as well as its standard deviation).
Beyond that, under causal dependence, E[09;0;71;] is an additional effect that corresponds to the

path Z; — Ms; — M,y; — Y;. Here, one can further write

E[690;71i] = cov(62i0;, 71:) + E[62:0;) E 1] (34)

= cor(02i6;,71i) 05,00+, + (cor(6;,0;)05,00 + E[02;|E[0;]) E[V14)-

In this expression, there are three sensitivity parameters that are introduced by the causal de-
pendence My, — My; and that cannot be further bounded: FEI6;], 05,9, and o (the other sensitivity
parameters appear also under causal independence). Note that this is a simple case with just two post-
instrument covariates. With additional post-instrument covariates, the number of of paths connecting
Z; to Y; and associated sensitivity parameters would further increase. For example, with three causally
dependent post-instrument covariates, one may have paths such as Z; — Ms; — My; — My; — Y;, etc.

Therefore, we suggest to focus on the case with causally independent post-instrument covariates.

E.2 Sensitivity Analysis under Causal Independence

The right graph in Figure A3 shows a DAG with K = 2 causally independent post-instrument covariates.
The assumption of causal independence is not testable. Due to unobserved confounding, one has open
paths such as My; — U; < M, that create a dependence between Mi; and Ms; even in the absence of
direct causal effects.

For the case of K post-instrument covariates, we generalize the structural model straightforwardly

as:

K
Y = py + BiD; + Z Viei My + XuXi + €15 (35)
k=1
K
k=1
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My = prr + i Zi + Ny Xi + €@pmyin for k=1, K. (37)

Leaving the conditioning on X; implicit as before, assumptions 12-15 become

Zi W (Biy Vris iy Thiy Okiy €5i), for k=1, .. K (38)
P(a; + opimiy > 0) =1, for k=1,.., K (39)
PO >0)=1,fork=1,.... K (40)
cov(My;(0), Myi(1)) > 0,for k=1,..., K. (41)

It is important to note that the monotonicity assumptions 39 and 40 have to hold for each post-
instrument covariate.

The estimand becomes

o; + Zszl OkiThi
Elo; + Zszl i ki]

Bil - (42)

The bias term evaluates to

> Eldrii)- (43)

=1
As before, one can write
E0kivki] = cov(Onis Vi) + E0ki]) E kil (44)
and
cov(Oki, Yii) = €or(Oki, Vii) O6 O (45)
and
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05, = Vvar(M(1)) + var(Mg(0)) — 2cov( My (1), My (0)). (46)

for each k. One can therefore bound each oy, as \/var(My|Z; = 1) + var(My|Z; = 0) using as-
sumption 41.

The first stage is

K
E[Di|Z; = 1) — E[Di|Z; = 0] = Ela; + Y dpimi]. (47)
k=1

The regressions of each My; on Z; yield E[d].

Rearranging and collecting terms, we have

E[Y;|Z; = 1] — E[Y}|Z; = 0] 1 y

K
{Z{E[Mki\zi = 1] — E[My|Z;i = 0)) E[y] + Vvar(Mys| Z = 1) + var(My|Z = O)UW}}
k=1

o; + ZkK:1 OkiTki
E[Cki + Zszl (SkﬂTki
ElY;|Z; = 1] — E[Y}| Z; = 0] 1 y
E[Di|Z; =1] = E[D|Z; = 0] E[D;|Z; = 1] — E[D;|Z; = 0]

<FE

] Bz] < (48)

{Z:{E[]MMZZ = 1] — E[M|Z; = 0)) E[ys] — Vvar(My|Z = 1) + var(My|Z = O)JW}}

In sum, each post-instrument covariate is associated with two sensitivity parameters, F[y;] and
04, The interpretation is as before: E[yy;] is the mean direct effect of Mj,; on Y;, holding D; and all
other observed variables constant. o.,, is the standard deviation of this effect across individuals.

It is straightforward to show that classical measurement error, as before, does not change this result.
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