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Abstract

Post-instrument covariates are often included as controls in IV analyses to address a

violation of the exclusion restriction. However, we show that such analyses are subject

to biases unless strong assumptions hold. Using linear constant-effects models, we

present asymptotic bias formulas for three estimators (with and without measurement

error): IV with post-instrument covariates, IV without post-instrument covariates, and

OLS. In large samples and when the model provides a reasonable approximation, these

formulas sometimes allow the analyst to bracket the parameter of interest with two

estimators and allow the analyst to choose the estimator with the least asymptotic

bias. We illustrate these points with a discussion of Acemoglu, Johnson, and Robinson

(2001).



Modern methodological research on instrumental variables (IV) has paid much attention to

the fundamental role of ignorability and exclusion restriction (“no direct effect”) assump-

tions, leading to a more careful justification of the use of variables as instruments (Bollen

2012). While an additional focus has been on understanding IV estimators in models with

heterogeneous causal effects, leading some analysts to cast doubt on the use of covariate-

adjusted two-stage least-squares (2SLS) estimators (Morgan and Winship 2015, p.316), co-

variate adjustment in linear IV regressions remains popular. Indeed, this seems to be done

in order to justify the ignorability and exclusion restriction assumptions. However, it is often

unclear whether such adjustment strategies lead to valid IV estimators.

For example, a major point of disagreement in the recent discussion between Polavieja

(2015, 2017) and Chou (2017) about an application of IV centered on this issue. One position

was that adjusting for “channeling variables”—those influenced by the instrument—can be

detrimental (Polavieja 2017, p.448), especially when the controls could be affected by the

treatment. But Chou notes that while adjusting for them may indeed lead to bias, failure to

do so may in some cases lead to violations of the exclusion restrictions, so that there would

be “no fix” (Chou 2017, p.439). A leading econometrics textbook, on the other hand, seems

to advocate statistical control in situations where the control is affected by the instrument

(Wooldridge 2010, p.94), and one can find further examples of this in empirical practice (e.g.,

Sharkey, Torrats-Espinosa and Takyar 2017; de Vaan and Stuart 2019; VanHeuvelen 2020),

including one of the most cited social science papers of the last 20 years (Acemoglu, Johnson

and Robinson 2001a).

What are the conditions under which covariate adjustments can address violations of

the exclusion restriction? If such conditions are not met, how do the bias of OLS and IV

estimators compare with and without the covariate adjustment? This paper provides insights

into these questions focusing on the linear model with constant-effects.

We first present large sample bias formulas for the IV and OLS estimators with the
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post-instrument covariate and the IV without this variable. Controlling for post-instrument

covariates potentially induces a variant of “endogenous selection bias” (Elwert and Winship

2014). In causal graph terms, this is due to a “collider” structure. Accordingly, there is

indeed a trade-off between this bias and bias from violations to the exclusion restriction

when no such control is undertaken.

However, the formulas make clear that, in some applications, the effect of interest can

be bounded by its estimates from models with and without the post-instrument covariate

included as control. We illustrate this point with an example based on Acemoglu, Johnson

and Robinson (2001a) (AJR) study of the effect of protection against expropriation on GDP.

We also provide general results regarding the comparison of the biases of these estimators.

We find that, without additional assumptions, invariance between IV estimates (with and

without this post-instrument covariate) does not imply that the exclusion restriction holds

or that the estimates are not biased. This highlights the known fact that the exclusion

restriction is not testable in just-identified models. Moreover, we show that the IV will have

bias at least as large as OLS when 1) the instrument has the same magnitude of effect on the

causal variable and the post-instrument covariate and 2) the magnitude of the unmeasured

confounding is the same for the causal variable and the post-instrument covariate.

In addition, we provide asymptotic bias formulas for the IV estimator that include the

effects of measurement error in the central independent (treatment) variable and the post-

instrument covariate. These bias formulas show that classical measurement error in the post-

instrument covariate does not necessarily lead to attenuation, and relatedly, measurement

error makes it difficult to predict the sign of the bias of the coefficient of interest.

We continue to re-analyze AJR to illustrate how these points can inform researchers in

an applied setting. AJR’s main conclusion is that better protection of property rights has a

positive causal effect on economic development. Our model without measurement error con-

firms AJRs prediction that the IV estimated effect of the protection against expropriations
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index on GDP is understated due to unmeasured common causes of ethnic fractionalization

(a post-instrument variable) and GDP. However, we show that if ethnic fractionalization is

measured with error, the IV estimate will be biased upwards.

We also illustrate how our results can be used to understand the sources of bias. In AJR,

the authors offer as one potential explanation for the difference between their OLS and IV

results attenuation bias in the OLS estimates caused by classical measurement error. Using

AJRs IV estimate in their baseline specification as the true effect and the fact that the OLS

estimate is smaller than that of the IV, our analysis implies that at least 35% of the variance

in the expropriation variable must be due to measurement error to rationalize their findings.

Finally, we comment on the implications of the paper’s results. Our goal is to provide

advice to practitioners facing different choices regarding which variables should be added

as controls in their analysis and, in particular, we discuss reporting standards that should

be upheld when addressing a violation of the exclusion restriction by adding a covariate is

deemed worthwhile. To conclude, we highlight the fact that all of our results are in the

context of linear constant-effects models and point readers to relevant literature that deals

with heterogeneous effects (e.g., Flores and Flores-Lagunes 2013; Mealli and Pacini 2013;

Schuessler, Glynn and Rueda 2021). We use constant-effect models not because we believe

that such parametric models are necessarily realistic, but because they allow for transparent

and constructive derivations of biases (Pearl 2013; Elwert and Pfeffer 2020; Elwert and

Segarra 2020) and they naturally lead to estimation routines based on OLS or 2SLS.

Our paper belongs to the literature that studies the appropriate set of controls to achieve

identification of causal effects. The consequences of adjusting for variables affected by the

treatment has received the most attention (Rosenbaum 1984; Angrist and Pischke 2009;

Montgomery, Nyhan and Torres 2018). Although this work highlights the risks linked to

conditioning on post-treatment variables, recent findings identify conditions under which

such adjustments could be bias-reducing (Elwert and Pfeffer 2020). Less attention has been
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given to the role of covariate adjustments in instrumental variables analysis. Swanson et al.

(2015), Canan, Lesko and Lau (2017), and Elwert and Segarra (2020) study bias induced

by controlling for a post-treatment covariate and sample selection in instrumental variable

settings, but do not study situations in which covariates are included as a way to address

a violation of the exclusion restriction. Deuchert and Huber (2017) explore situations in

which an instrument affects more than one variable that has effects on an outcome and

where researchers control for one of them. Hughes et al. (2019) study several models where

the instrument influences sample selection and there are variables that affect sample inclusion

that could be adjusted for. We complement these analyses by providing large sample bias

formulas for the IV and OLS estimators with the post-instrument covariate and analyze the

adjustment when such variable is measured with error. Finally, our paper also contributes

to work that explores violations of exclusion restrictions and sensitivity analyses to such

violations (e.g. Conley, Hansen and Rossi 2012; Betz, Cook and Hollenbach 2018).

Models for bias formulas and comparison

We are interested in situations in which a researcher wants to estimate the effect of an

explanatory variable x on a dependent variable y but worries about an unmeasured common

cause of x and y or classical measurement error in x. Suppose we have a linear model

y = β0 + βxx+ ε0,

with E[ε0] = 0 and cov(x, ε0) 6= 0, where the latter expression might be due to an omitted

variable or measurement error. To address the endogeneity problem, the researcher considers

using a variable z as an instrument. For an IV regression to give consistent estimates of βx,

three conditions must hold: the model must be correct - specifically, z cannot enter the

equation for y (exclusion restriction), the instrument must be related to x (cov(x, z) 6= 0),
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and it must not be related to other determinants of y (cov(z, ε0) = 0). Unfortunately, the

researcher is concerned that z violates the first condition, by having an effect on y through w,

an observed variable available to the researcher. Our goal is to determine the consequences

of including w as a control in the IV regression.

As our running example, we consider Acemoglu, Johnson and Robinson (2001a). In this

paper, the authors want to estimate the effect of protection of property rights (measured with

an index of protection against expropriation), x, on GDP per capita, y. An analysis based

on OLS regressions will not give accurate estimates, since: it is difficult to account for all

common causes of economic institutions and economic performance, and any index against

expropriation is measured with error and cannot capture all institutional arrangements that

lead to property right protection. To address these issues, AJR propose as an instrument

of the index of expropriation the mortality rates of settlers in the colonization period. AJR

argue that in places were Europeans faced higher mortality rates, they could not settle

in mass and were more likely to impose extractive economic institutions—those that give

property right protections only to the elites. The fact that economic and political elites have

an advantaged position in society to maintain the rules that favor them explains why the

settler mortality in the colonial period would impact current indexes of expropriation.

AJR are aware of potential violations of the exclusion restriction and present as robustness

tests results in which they control for variables that capture alternative links between the

settler mortality rate and GDP per capita. One of them is ethnolinguistic fragmentation,

z. Because ethnolinguistic fragmentation has been linked to the provision of public goods,

incidence of conflict, social capital, and directly to economic growth (Alesina et al. 2003;

Montalvo and Reynal-Querol 2005; Bjørnskov 2008), a potential impact of settler mortality

on fragmentation could bias the effect of interest. The question that arises is whether the

authors should control for measures of ethnolinguistic fragmentation to alleviate a violation

of the exclusion restriction.
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The fundamental problem with this approach is the possibility that w is itself affected

by the error term (Brito and Pearl 2002). Our interpretation of the situation studied by

AJR is presented by the causal graph (Pearl 2009) in Figure 1.1 The relationship between

ε and w is represented by the dashed arrow. This is because, arguably, ethnolinguistic

fragmentation is also influenced by cultural, geographical, and historical factors that are

unobserved determinants of GDP per capita.

z x

w

y

ε

Figure 1: Model’s graphical representation

Note that we do not have an arrow from x to w. If we did, the graph would be cyclic,

further complicating identification. The existing arrow from w to x can capture how high

ethnolinguistic fragmentation could lead to violations of property rights of minorities in cases

where there is ethnic conflict.

In order to assess the relative value of “fixing” the IV estimation by controlling for w, we

also consider as an alternative OLS estimates. In accordance with Figure 1, the new causal

model for y that serves as the basis for both the fixed IV and the OLS approach is then

y = β0 + βxx+ βww + ε.

Note that while this structural model makes a strong constant effects assumption, we

do not make any assumptions about the shape of the distributions of the involved variables

(including ε). Furthermore, our analysis does not make any assumptions on the functional
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form of the causal models for the other observed variables (z, x, w). Indeed, the consistency

of 2SLS estimation does not rely on a correctly specified first-stage model (Vansteelandt and

Didelez 2018, Proposition 3). If one introduces stronger linearity assumptions for the other

observed variables, one can also derive our results directly from the causal graph using the

rules of path-tracing (Pearl 2013).

Let σi denote the standard deviation of variable i and ρij denote the correlation between

variables i and j, where i, j ∈ {w, x, y, z}. Note that in Figure 1, correlations are induced

by open paths between variables (Elwert 2013). The next result allows us to compare the

probability limits of the estimates of βx. All derivations are in the appendix.

Proposition 1. The probability limits of IV estimates of βx with and without w and the

OLS estimates with w for the model in Figure 1 are:

plim β̂IV no w
x = βx +

σwρzwβw
σxρzx

,

plim β̂IV w
x = βx −

σερzwρwε
σx(ρzx − ρxwρzw)

,

plim β̂OLS w
x = βx +

σε(ρxε − ρxwρwε)
σx(1− ρ2xw)

.

According to this result, there are two conditions that make β̂IV w
x consistent for βx: if w

and ε are uncorrelated (ρwε = 0), or if w and z are uncorrelated (ρzw = 0). While the first

of them is hypothetically possible, the second is ruled out by assumption, as the researcher

thinks the instrument is impacting the outcome through w. If w is affected by the error

(ρwε 6= 0), the result tells us it is possible to obtain worse estimates (compared to OLS)

by running an IV regression even when the instrument is not related to y through different

channels than x and w.

This is a variant of endogenous selection bias (Elwert and Winship 2014): w is a collider

on the path z −→ w ←− ε −→ y. Controlling for w does block direct effects of the instrument on

the outcome, but at the same time opens up this path, leading to an alternative non-causal

7



correlation (see also Hughes et al. (2019) and Elwert and Segarra (2020) for similar cases

where sample selection impacted by the instrument violates the exclusion restriction). Along

these lines, w in Figure 1 does not d-separate y from z in the graph that removes the arrow

from x to y, which is one of the sufficient conditions for identification of the effect in linear

models (Brito and Pearl 2002).

However, note that with regards to the estimators that adjust for w, the only parameters

that cannot be estimated are σε, ρxε, and ρwε. Among them, σε appears in the numerator of

the bias terms of the estimates that include w. So, if a researcher is interested in assessing

relative bias of the OLS and IV estimators when including w, she only needs to provide a

statement about the relative values of ρxε and ρwε (as σε cancels). Equipped with sample

estimates of the ρzx and ρxw, a researcher could determine combinations of ρxε and ρwε

that would make one estimator preferred to the other one. Clearly, substantive knowledge

regarding the sources of endogeneity and, in particular, the sign of the unknown correlations

could further limit the range of the values of ρxε and ρwε that are relevant for this comparison,

as well as bounds for the ratio of the biases.

Similarly, the expressions in Proposition 1 allow for a comparison of the biases between

the IV adjusted and unadjusted models. This comparison only depends on the relative sizes

of βw and σερwε after replacing the rest of parameters with their sample analogs.

Also note that knowledge of the sign of the correlations in the expressions of Proposition

1 and the fact that they are in the interval [−1, 1] allow the researcher to determine asymp-

totic bounds of the effect of interest. To illustrate, we can return to the settler mortality

example. Recall that in this case, y captures GDP per capita, z is colonial settler mortality,

x is an index of protection against expropriation, and w is a measure of ethnolinguistic frag-

mentation. If higher settler mortality induces a more hierarchical social structure separating

natives, slaves, and Europeans, ρzw > 0. Because ethnolinguistic fragmentation has been

linked with more conflict and less social capital ρwε < 0 and, possibly, βw < 0. In addition,
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if the correlations between fragmentation and protection against expropriation (ρxw) and

between fragmentation and settler mortality (ρzw) are weaker than the correlation of settler

mortality and protection against expropriation (ρzx)—as they are in AJR data—, the IV

coefficient on protection against expropriation in the model that controls for fragmentation

would understate the effect. That is, the IV estimate with w would (asymptotically) bound

the true effect from below, while the IV estimate without w would bound it from above.

More generally, the following corollary indicates when the adjusted IV estimates with w

and without it can bound the effect of interest.

Corollary 1. If sgn
(
βw
ρzx

)
= sgn

(
ρwε

ρzx−ρxwρzw

)
, then β is asymptotically bounded by β̂IV no w

x

and β̂IV w
x .

In our discussion of the AJR example, we have assumed that all variables are measured

without error to illustrate how a researcher could use Proposition 1. In the next section,

we examine what happens if the x or w are measured with error, and return to the settler

mortality example.

Proposition 1 also highlights that finding an equality of adjusted and unadjusted esti-

mates is not necessarily informative. It turns out that when the scaled effect of w on y equals

the negative of the scaled confounding of w and y, IV with and without w produces similar

estimates. Therefore, seeing that the IV estimate does not change after controlling for w

does not mean estimates are consistent nor that the concerns about violating the exclusion

restriction are unimportant. The result is inline with the fact that it is not possible to test

the exclusion restriction in just-identified models without further assumptions.

Corollary 2. If σwβw
ρzx

= − σερwε
(ρzx−ρxwρzw) , then plim β̂IV no w

x = plim β̂IV w
x .

We can also consider the simple case where we remove any arrows between x and w,

confounding is equally bad for x and w, and z is an equally strong instrument for x and w.

Under those conditions, we can prove that OLS has less large-sample bias than IV.
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Corollary 3. If |ρxε| = |ρwε| and |ρzx| = |ρzw| then
∣∣∣Bias(β̂OLSx )

∣∣∣ ≤ ∣∣∣Bias(β̂IVx )
∣∣∣.

This result gives a way to compare relative biases in large samples when assuming the

absence of any causal relationships between the treatment and the post-instrument covariate

is plausible. The result implies that even in linear constant-effects models, in order for IV

with a post-instrument covariate to be preferred to OLS, one would need to estimate ρzx

and ρzw, and then argue that ρwε was sufficiently small vis-a-vis ρxε.

Measurement error

One reason why researchers employ instrumental variables is to address concerns regarding

measurement error in their treatment variable and the biases that this induces in their

estimates. We now explore situations in which measurement error affects the explanatory

variables x and w while maintaining all other relationships between the variables as described

by the model in Figure 1.

Let x̃ and w̃ denote the observed covariates with x̃ = x+ ux and w̃ = w + uw, where ux

and uw are zero-mean measurement errors with variances σ2
ux and σ2

uw . We focus on the case

of classical measurement error, in which the measurement errors are not related to the true

value of the explanatory variables. We further assume that the measurement error terms are

not correlated with the error term in the population model, ε, the instrument, z, nor each

other.

It is well known that instrumental variables regression with a valid instrument can give us

consistent estimates of βx even when we only observe x̃. We are now interested in studying

the question of how the IV estimates perform when there is a violation of the exclusion

restriction and we control for an additional variable w̃ that captures the alternative link

(other than through x) between the instrument and the outcome. The following proposition

gives expressions characterizing large sample bias of such an approach.
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Proposition 2. If E[xux] = E[xuw] = E[wux] = E[wuw] = E[uxuw] = E[uxε] = E[uwε] =

E[zuw] = E[zux] = 0, the probability limits of IV estimates of βx with and without w and

the OLS estimates with w are:

plim β̂IV no w
x = βx +

σw̃ρzw̃βw
σx̃ρzx̃

,

plim β̂IV w
x = βx +

σ2
uwρzw̃βw

σx̃σw̃(ρzx̃ − ρx̃w̃ρzw̃)
− σερzw̃ρw̃ε
σx̃(ρzx̃ − ρx̃w̃ρzw̃)

.

plim β̂OLS w
x = βx

(
1−

σ2
ux

σ2
x̃(1− ρ2x̃w̃)

)
+
σε(ρx̃ε − ρx̃w̃ρw̃ε)
σx̃(1− ρ2x̃w̃)

+
σ2
uwρx̃w̃βw

σx̃σw̃(1− ρ2x̃w̃)
,

It is known that OLS estimates will not be necessarily biased towards zero when other

mismeasured variables are adjusted for (e.g, Garber and Klepper 1980). More interestingly,

we also see that including w̃ in the instrumental variable regression adds a term in the bias

expression that is proportional to the variance of the measurement error of w and to its

effect on the outcome. This makes clear that including w̃ will not necessarily bias the IV

estimate toward zero either. Note also that even if w̃ and ε are uncorrelated, adjusting

for this noisy covariate would not fully intercept the exclusion violation. This leads to an

inconsistent estimator where the asymptotic bias will depend on the relationships between

the instrument and the post-instrument variable, instrument and treatment, and treatment

and post-instrument variable. In sum, the proposition highlights that a researcher trying to

address a violation of the exclusion restriction by adding a regressor should not only be con-

cerned about potential unmeasured common causes of y and w, but also about measurement

error in the added regressor.

The formula for the OLS asymptotic bias also makes clear that unlike in the case without

measurement error, a comparison of the relative biases with w included between estimators

is not straightforward. This is because the ratio of such biases depends on βx, βw, and
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Table 1: Point Estimates of the Effects of Institutions on Economic Performance

OLS IV

Explanatory variables (1) (2) (3)

Protection against expropriation (x̃) 0.46 0.94 0.74
Ethnolinguistic fragmentation (w̃) -1.3 -1.02

First stage results
Log European settler mortality (z) -0.61 -0.64

Outcome, y, is GDP per capita. Column (1) corresponds
to Model (7) Table 6 Panel C in AJR, column (2) corre-
sponds to Model (1) Table 4 Panels A and B in AJR, and
column (3) corresponds to Model (7) from Table 6 Panels
A and B in AJR.

σuw , in addition to σε, ρx̃ε and ρw̃ε. This further highlights the difficulties of attempting to

address a violation of the exclusion restriction by adding a post-instrument covariate when

measurement error is an additional concern.

Application

To illustrate how these results can be applied, we return to the AJR’s example. We now allow

for the protection against expropriation and ethnolinguistic fragmentation variables to have

an additive error as described in the previous section and label them x̃ and w̃, respectively.

This is consistent with AJR’s own motivation for using an IV strategy and the difficulties

of measuring ethnic diversity and fragmentation (Okediji 2005). For ease of exposition, we

reproduce AJR’s estimates from their Tables 4 and 6 and Appendix A in Table 1, focusing

on the regressions which include as a control the measure of ethnolinguistic fragmentation.2

Using their data (Acemoglu, Johnson and Robinson 2001b), the sample estimates of the

correlations are ρzw̃ = 0.49, ρzx̃ = −0.52, and ρx̃w̃ = −0.22. This implies that ρzx̃−ρx̃w̃ρzw̃ =

−0.41.3 Therefore, if we assume based on the literature findings (and as in AJR) that ρw̃ε < 0

and that there is no measurement error in the added regressor (σuw = 0), Proposition 2
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concurs with the AJR analysis that the IV analysis including ethnolinguistic fragmentation

has negative bias.4

However, with measurement error in the post-instrument covariate (σuw 6= 0), Proposi-

tion 2 indicates that when ethnolinguistic fragmentation has a negative effect on GDP (as

suggested by the literature), the second term of the plim of the IV with w̃ will be positive.

Hence it is not easy to determine the sign of the bias as it depends on the fragmentation

effect (βw), the confounding (ρwε), and the variance of the error (σ2
uw).

Our results allow us to explain possible sources of differences between OLS and IV es-

timates. AJR’s OLS estimate is smaller than the IV estimate that conditions on ethnic

fractionalization and also than that of the model that does not. AJR explain this difference

as a result of attenuation bias caused by measurement error in the institutions variable with

OLS. Using Proposition 2, we examine under what conditions measurement error is consis-

tent with those differences. An inspection of the plim for OLS in Proposition 2 together

with our computed correlations indicates that the third term in that expression is positive.

Moreover, the second term in the expression of the plim for OLS is likely positive as well,

since ρx̃ε will be positive and possibly larger than ρx̃w̃ · ρw̃ε. What would be the minimum

variance in the measurement error of the institutional variable that is consistent with the

observed differences between the OLS and IV estimates?

To answer that question, we set the two last (positive) terms in the expression of the

plim for OLS to zero. We then use AJR’s IV estimate in the model that includes ethnolin-

guistic fragmentation in place of βx, 0.74, and solve for σ2
ux to obtain 0.77.5 This means that

measurement error must account for at least 35% (≈ 0.77
1.472

) of the variation in the observed

institutions variable to rationalize the difference between IV and the OLS estimates. Clearly,

we could have chosen a different estimate of βx to compute that minimum measurement error

variance. If we use instead AJR’s baseline estimate of 0.94, the measurement error in the

institutions variable must make up nearly 50% (≈ 1.05
1.472

) of the total variance.
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It is important to note that the previous analysis relies on assumptions highlighted in

Proposition 2 that are in line with classical measurement error. It also relies on the as-

sumptions used in the linear constant-effect models of AJR and this paper. We do believe,

however, that these assumptions provide a first step to analyze this application in a way

that is consistent with reasonable scenarios for the situation of interest.

Discussion and conclusion

Instrumental variables regression methods allow researchers to address estimation challenges

like unobserved heterogeneity and classical measurement error. Whether the method delivers

accurate results depends on the tenability of its assumptions. Here, we have studied one

way in which researchers have dealt with potential violations of one of them, the exclusion

restriction. We find that although it is possible for researchers to fix violations of the

exclusion restriction by adding controls, doing so requires a number of strong assumptions.

When these do not hold, the IV estimates can be worse than what the researcher would

obtain running an OLS regression.

Our findings have a number of implications for practice. First, even when the linear

constant-effects model is used, the inclusion of a post-instrument covariate in 2SLS esti-

mation requires strong theoretical assumptions, and therefore, researchers may want to use

alternative approaches. One of them is to focus on the estimated effect of the instrument (the

“reduced form effect”) which will not be invalidated by an exclusion restriction violation.

In many cases, when the IV analysis is questionable, this effect will have some theoretical

or policy relevance that could be emphasized. Another approach is to conduct a sensitivity

analysis with respect to the exclusion restriction (e.g. see Conley, Hansen and Rossi (2012)),

as the results might be robust to these violations.

Second, if conditioning on post-instrument covariates is conducted, the corresponding
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OLS analysis should be reported and the measurement error and unmeasured common causes

in both approaches should be discussed in concert. The formulas presented here should help

with this discussion and depending on the application of interest, might give bounds for the

effect of interest.

Finally, we note that the entirety of this paper relies on the linear constant-effects model.

If the constant-effects model is not a reasonable approximation, then there are many potential

parameters of interest from an instrumental variables analysis (Imbens et al. 2014), and

assessment of exclusion restriction violations becomes more complicated. Flores and Flores-

Lagunes (2013) and Mealli and Pacini (2013) provide some strategies in this context and

also surveys of the literature. Finally, in Schuessler, Glynn and Rueda (2021) we provide a

nonparametric analysis of the problem and develop a semi-parametric sensitivity analysis.
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Author’s note

Data and code to replicate all empirical results found in this paper can be found under

http://dx.doi.org/10.17605/OSF.IO/Z38RX.
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Notes

1. AJR do not provide a model’s graphical representation.

2. Unlike many other papers that add post-instrument controls, AJR’s report OLS estimates as

well as IV results for all specifications, discuss whether the added regressors can be correlated

to the error term in the main model, and make available their data and code for replication.

3. The computed values of the standard deviations are: σx̃ = 1.47, σw̃ = 0.32.

4. Their analysis, included in Appendix A page 1396, differs from ours as it treats the protection

against expropriation as exogenous while the added covariate (ethnolinguistic fragmentation)

is correlated with the error term from the second stage.

5. That is, we solve for σ2
ux in expression

plim β̂OLS w
x = βx

(
1−

σ2
ux

σ2
x̃(1− ρ2x̃w̃)

)
,

where we assume plim β̂OLS w
x is 0.46 (their OLS estimate that adjust for fractionalization),

replace βx by 0.74, and use the estimated correlation ρx̃w̃ = −0.22 and variance σx̃ = 1.47.
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