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Abstract

Post-instrument covariates are often included as controls in IV analyses to address a

violation of the exclusion restriction. However, we show that such analyses are subject

to biases unless strong assumptions hold. Using linear constant-effects models, we

present asymptotic bias formulas for three estimators (with and without measurement

error): IV with post-instrument covariates, IV without post-instrument covariates, and

OLS. In large samples and when the model provides a reasonable approximation, these

formulas sometimes allow the analyst to bracket the parameter of interest with two

estimators and allow the analyst to choose the estimator with the least asymptotic

bias. We illustrate these points with a discussion of Angrist (1990) and a re-analysis

of Acemoglu, Johnson, and Robinson (2001).
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Modern methodological research on instrumental variables (IV) has paid much attention to

the fundamental role of ignorability and exclusion restriction (“no direct effect”) assump-

tions, leading to a more careful justification of the use of variables as instruments (Bollen

2012). While an additional focus has been on understanding IV estimators in models with

heterogeneous causal effects, leading some analysts to cast doubt on the use of covariate-

adjusted two-stage least-squares (2SLS) estimators (Morgan and Winship 2015, p.316), co-

variate adjustment in linear IV regressions remains popular. Indeed, this seems to be done

not to examine heterogeneity, but in order to justify the more fundamental ignorability and

exclusion restriction assumptions. However, it is often unclear whether such adjustment

strategies lead to valid IV estimators.

For example, a major point of disagreement in the recent discussion between Polavieja

(2015, 2017) and Chou (2017) about a method based on IV centered on exactly this is-

sue. One position was that adjusting for “channeling variables”—those influenced by the

instrument—can be detrimental (Polavieja 2017, p.448), while Chou notes that in addition

to this leading to “post-treatment bias,” failure to control for these covariates may in some

cases lead to violations of the exclusion restrictions, so that there would be “no fix” (Chou

2017, p.439). A leading econometrics textbook, on the other hand, seems to advocate statis-

tical control in such situations (Wooldridge 2010, p.94), and one can find further examples

of this in empirical practice (e.g., Sharkey, Torrats-Espinosa and Takyar 2017; de Vaan and

Stuart 2019; VanHeuvelen 2020), including one of the most cited social science papers of the

last 20 years (Acemoglu, Johnson and Robinson 2001).

Can covariate adjustments address violations of the exclusion restriction? If so, what are

the conditions under which this is achieved? If such conditions are not met, how do the bias

of OLS and IV estimators compare with and without the covariate adjustment that attempts

to address such violation? This paper provides insights into these questions focusing on the

linear model with constant-effects.
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We first present large sample bias formulas for the IV and OLS estimators with the

post-instrument covariate and the IV without this variable. Controlling for post-instrument

covariates potentially induces a variant of “endogenous selection bias” (Elwert and Winship

2014). In causal graph terms, this is due to a “collider” structure. Accordingly, there is

indeed a trade-off between this bias and bias from violations to the exclusion restriction

when no such control is undertaken.

However, the formulas make clear that, in some applications, the effect of interest can

be bounded by its estimates from models with and without the post-instrument covariate

included as control. We illustrate this point with an example based on Angrist (1990), the

study of the effects of serving in the military on earnings whose research design has inspired

many others in economics, political science, and sociology (e.g. Erickson and Stoker 2011;

Conley and Heerwig 2011; Heerwig and Conley 2013; Davenport 2015).

We also provide general results regarding the comparison of the biases of these estimators.

We find that, without additional assumptions, invariance between IV estimates (with and

without this post-instrument covariate) does not imply that the exclusion restriction holds

or that the estimates are not biased. Moreover, we show that the IV will have bias at least as

large as OLS when 1) the instrument has the same magnitude of effect on the causal variable

and the post-instrument covariate and 2) the magnitude of the unmeasured confounding is

the same for the causal variable and the post-instrument covariate.

In addition, we provide bias formulas that include the effects of measurement error in

the central independent (treatment) variable and the post-instrument covariate. These bias

formulas show that classical measurement error in the post-instrument covariate does not

necessarily lead to attenuation, and relatedly, measurement error makes it difficult to predict

the sign of the bias of the coefficient of interest.

We follow by illustrating how these points can inform researchers in an applied setting

by re-analyzing the Acemoglu, Johnson, and Robinson (2001) (AJR) study of the effect
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of protection against expropriation on GDP. The study’s main conclusion is that better

protection of property rights has a positive causal effect on economic development. Our

model without measurement error confirms AJRs prediction that the IV estimated effect

of the protection against expropriations index on GDP is understated due to unmeasured

common causes of ethnic fractionalization (a post-instrument variable) and GDP. However,

we also show that if ethnic fractionalization is measured with error, the IV estimate will be

biased upwards.

We also show how our results can be used to understand the sources of bias. In AJR,

the authors offer as one potential explanation for the difference between their OLS and IV

results attenuation bias in the OLS estimates caused by classical measurement error. Using

AJRs IV estimate in their baseline specification as the true effect and the fact that the OLS

estimate is smaller than that of the IV, our analysis implies that at least 35% of the variance

in the expropriation variable must be due to measurement error to rationalize their findings.

Finally, we comment on the implications of the paper’s results, emphasizing alternatives

to controlling for post-instrument variables. Our goal is to provide advice to practitioners

facing different choices regarding which variables should be added as controls in their analy-

sis and, in particular, we discuss reporting standards that should be upheld when addressing

a violation of the exclusion restriction by adding a covariate is deemed worthwhile. To con-

clude, we highlight the fact that all of our results are in the context of linear constant-effects

models and point readers to relevant literature that deals with heterogeneous effects. We use

constant-effect models not because we believe that such parametric models are necessarily

realistic, but because they allow for transparent and constructive derivations of biases (Pearl

2013; Elwert and Pfeffer 2020; Elwert and Segarra 2020). Furthermore, they naturally lead to

estimation routines based on OLS or 2SLS which still are extremely popular in practice, and

give us some identification power in the empirically relevant case when there is measurement

error in the post-instrument variable.
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Our paper belongs to the growing literature that studies the appropriate set of controls

to achieve identification of causal effects. The consequences of adjusting for post-treatment

variables—those affected by the treatment—has received the most attention (Rosenbaum

1984; Angrist and Pischke 2009; Montgomery, Nyhan and Torres 2018). Although this work

highlights the risks linked to conditioning on post-treatment variables, recent findings identify

conditions under which such adjustments could be bias-reducing (Elwert and Pfeffer 2020).

Less attention has been given to the role of covariate adjustments in instrumental variables

analysis. Swanson et al. (2015), Canan, Lesko and Lau (2017), and Elwert and Segarra (2020)

study bias induced by controlling for a covariate affected by the treatment in instrumental

variable settings, but do not study situations in which covariates are included as a way to

address a violation of the exclusion restriction. Deuchert and Huber (2017) explore situations

in which an instrument affects more than one variable that has effects on an outcome of

interest and where researchers control for one of them. We extend this analysis by providing

large sample bias formulas for the IV and OLS estimators with the post-instrument covariate

which can help researchers bound the effects of interest. We also show that invariance

between IV estimates with and without this post-instrument covariate—an informal test

found in the literature to show robustness to violations of exclusion restrictions—is not

indicative of consistency of estimates of causal effects, and analyse post-instrument variable

adjustment when such variable is measured with error. Finally, our paper also contributes

to work that explores violations of exclusion restrictions and sensitivity analyses to such

violations (e.g. Conley, Hansen and Rossi 2012; Betz, Cook and Hollenbach 2018).

Models for bias formulas and comparison

We are interested in situations in which a researcher wants to estimate the effect of an

explanatory variable x on a dependent variable y but worries about an unmeasured common

cause of x and y or classical measurement error in x. Suppose we have a linear model
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y = β0 + βxx+ ε0,

with E[ε0] = 0 and cov(x, ε0) 6= 0, where the latter expression might be due to an omitted

variable or measurement error. To address the endogeneity problem, the researcher considers

using a variable z as an instrument. For an IV regression to give consistent estimates of βx,

three conditions must hold: the model must be correct - specifically, z cannot enter the

equation for y (exclusion restriction), the instrument must be related to x (cov(x, z) 6= 0),

and it must not be related to other determinants of y (cov(z, ε0) = 0). Unfortunately, the

researcher is concerned that z violates the first condition, by having an effect on y through w,

an observed variable available to the researcher. Our goal is to determine the consequences

of including w as a control in the IV regression.

To fix ideas, consider an example from Angrist (1990), whose identification strategy

has inspired multiple studies on the effects of military service on wages, marital stability,

mortality, political attitudes, and turnout, among others (e.g. Erickson and Stoker 2011;

Conley and Heerwig 2011, 2012; Heerwig and Conley 2013; Davenport 2015). In Angrist

(1990), the author is interested in estimating the effect of serving in the Vietnam war on

earnings. Angrist notes that men who have a low draft lottery number were more likely to

serve in the war and uses functions of this number as instruments of military service.

Although the number that determines draft eligibility is chosen randomly, there could

be some concerns about the validity of the exclusion restriction. For example, those who

received a low lottery number could have chosen to stay in school to obtain a deferment

(Angrist 1990, p. 330). This creates a direct link between salaries and lottery numbers,

which invalidates the exclusion restriction. If information on post-lottery education was

available, should we control for it? Wooldridge (2010) points out that not doing so would

violate the condition cov(z, ε0) = 0 that is needed for consistent estimation (Wooldridge
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2010, p. 94, 95). Can this justify the inclusion of the education variable as a control?

The fundamental problem with this approach is the possibility that w is itself affected

by the error term. This is represented by the dashed arrow from ε to w in Figure 1, which

summarizes the situation. In the example, measures of post-lottery educational attainment

could take the role of w. Arguably, this variable is also influenced by innate ability, parents’

levels of education, and other unobserved determinants of income.

εz

x

w

y

Figure 1: Model’s graphical representation

There are a couple important observations about the model in Figure 1. First, we do

not have an arrow from x to w. If we did, the graph would be cyclic, further complicating

identification. Second, while we do have an arrow from w to x, this could be replaced (or

complemented) with an unmeasured common cause of x and w without changing the results

that follow.

In order to asses the relative value of “fixing” the IV estimation by controlling for w, we

also consider as an alternative OLS estimates. The new causal model for y that serves as

the basis for both the fixed IV and the OLS approach is then

y = β0 + βxx+ βww + ε.

Note that while this structural model makes a strong constant effects assumption, we
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do not make any assumptions about the shape of the distributions of the involved variables

(including ε). Furthermore, our analysis does not make any assumptions on the causal models

for the other observed variables (z, x, w). Indeed, the consistency of 2SLS estimation does not

rely on a correctly specified first-stage model (Vansteelandt and Didelez 2018, Proposition

3).

Let σi denote the standard deviation of variable i and ρij denote the correlation between

variables i and j, where i, j ∈ {w, x, y, z}. Note that in Figure 1, correlations are induced

by open paths between variables (Elwert 2013). The next result allows us to compare the

probability limits of the estimates of βx. All derivations are in the appendix.

Proposition 1. The probability limits of IV estimates of βx with and without w and the

OLS estimates with w for the model in Figure 1 are:

plim β̂IV no w
x = βx +

σwρzwβw
σxρzx

,

plim β̂IV w
x = βx −

σερzwρwε
σx(ρzx − ρxwρzw)

,

plim β̂OLS w
x = βx +

σε(ρxε − ρxwρwε)
σx(1− ρ2xw)

.

According to this result, there are two conditions that make β̂IV w
x consistent for βx:

if w and ε are uncorrelated (ρwε = 0), or if w and z are uncorrelated (ρzw = 0). While

the first of them is hypothetically possible, the second is ruled out by assumption, as the

researcher thinks the instrument is impacting the outcome through w. If w is affected by

the error (ρwε 6= 0), the result tells us it is possible to obtain worse estimates by running an

IV regression even when the instrument is not related to y through different channels than

x and w.

This is a variant of endogenous selection bias (Elwert and Winship 2014): w is a collider

on the path z −→ w ←− ε −→ y. Controlling empirically for w does block direct effects of

the instrument on the outcome, but at the same time opens up this path, leading to an
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alternative non-causal correlation.

However, note that with regards to the estimators that adjust for w, the only parameters

that cannot be estimated are σε, ρxε, and ρwε. Among them, σε appears in the numerator of

the bias terms of the estimates that include w. So, if a researcher is interested in assessing

relative bias of the OLS and IV estimators when including w, she only needs to provide a

statement about the relative values of ρxε and ρwε (as σε cancels). Equipped with sample

estimates of the ρzx and ρxw, a researcher could determine combinations of ρxε and ρwε

that would make one estimator preferred to the other one. Clearly, substantive knowledge

regarding the sources of endogeneity and, in particular, the sign of the unknown correlations

could further limit the range of the values of ρxε and ρwε that are relevant for this comparison,

as well as bounds for the ratio of the biases.

Similarly, note that knowledge of the sign of these correlations and the fact that they

are in the interval [−1, 1] also allow the researcher to determine bounds of the effect of

interest. To illustrate, we can return to the Vietnam-draft example. Recall that in this

case, y captures earnings, z is a dummy variable that equals one if the person was draft

eligible, x is a dummy variable that equals one if the person is a veteran, and w is a dummy

variable that equals one if the person attended college. Since both, draft eligibility and

unobserved ability, could encourage college enrollment, ρzw > 0 and ρwε > 0. In addition,

one would expect a positive effect of college attendance on earnings (βw > 0) as well as a

positive correlation between draft eligibility and veteran status (ρzx > 0). Given that the

correlations between veteran status and college attendance is likely smaller than the one

between draft eligibility and veteran status, the estimated IV coefficient on veteran status

of the model that does not control for college attendance would overstate the true effect. On

the other hand, the IV coefficient on veteran status in the model that controls for college

attendance would understate it. That is, the IV estimate with w would bound the true effect

from below, while the IV estimate without w would bound it from above.
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More generally, the following corollary indicates when the adjusted IV estimates with w

and without it can bound the effect of interest.

Corollary 1. If sgn
(
βw
ρzx

)
= sgn

(
ρwε

ρzx−ρxwρzw

)
, then β is bounded by β̂IV no w

x and β̂IV w
x .

However, finding an equality of adjusted and unadjusted estimates is not necessarily

informative. It turns out that when the scaled effect of w on y equals the negative of

the scaled confounding of w and y, IV with and without w produces similar estimates.

Therefore, seeing that the IV estimate does not change after controlling for w does not mean

estimates are consistent nor that the concerns about violating the exclusion restriction are

unimportant:

Corollary 2. If σwβw
ρzx

= − σερwε
(ρzx−ρxwρzw) , then plim β̂IV no w

x = plim β̂IV w
x .

We can also consider the simple case where we remove any arrows between x and w,

confounding is equally bad for x and w, and z is an equally strong instrument for x and w.

Under those conditions, we can prove that OLS has less large-sample bias than IV.

Corollary 3. If |ρxε| = |ρwε| and |ρzx| = |ρzw| then
∣∣∣Bias(β̂OLSx )

∣∣∣ ≤ ∣∣∣Bias(β̂IVx )
∣∣∣.

This result gives a quick way to compare relative biases when assuming the absence of any

causal relationships between the treatment and the post-instrument covariate is plausible.

The result implies that even in linear constant-effects models, in order for IV with a post-

instrument covariate to be preferred to OLS, one would need to estimate ρzx and ρzw, and

then argue that ρwε was sufficiently small vis-a-vis ρxε.

Measurement error

One reason why researchers employ instrumental variables is to address concerns regarding

measurement error in their treatment variable and the biases that this induces in their

estimates. We now explore situations in which measurement error affects the explanatory
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variables x and w while maintaining all other relationships between the variables as described

by the model in Figure 1.

Let x̃ and w̃ denote the observed covariates with x̃ = x+ ux and w̃ = w + uw, where ux

and uw are zero-mean measurement errors with variances σ2
ux and σ2

uw . We focus on the case

of classical measurement error, in which the measurement errors are not related to the true

value of the explanatory variables. We further assume that the measurement error terms are

not correlated with the error term in the population model, ε, the instrument, z, nor each

other.

It is well known that instrumental variables regression with a valid instrument can give us

consistent estimates of βx even when we only observe x̃. We are now interested in studying

the question of how the IV estimates perform when there is a violation of the exclusion

restriction and we control for an additional variable w̃ that captures the alternative link

(other than through x) between the instrument and the outcome. The following proposition

gives expressions characterizing large sample bias of such an approach.

Proposition 2. If E[xux] = E[xuw] = E[wux] = E[wuw] = E[uxuw] = E[uxε] = E[uwε] =

E[zuw] = E[zux] = 0, the probability limits of IV estimates of βx with and without w and

the OLS estimates with w are:

plim β̂IV no w
x = βx +

σw̃ρzw̃βw
σx̃ρzx̃

,

plim β̂IV w
x = βx +

σ2
uwρzw̃βw

σx̃σw̃(ρzx̃ − ρx̃w̃ρzw̃)
− σερzw̃ρw̃ε
σx̃(ρzx̃ − ρx̃w̃ρzw̃)

.

plim β̂OLS w
x = βx

(
1−

σ2
ux

σ2
x̃(1− ρ2x̃w̃)

)
+
σε(ρx̃ε − ρx̃w̃ρw̃ε)
σx̃(1− ρ2x̃w̃)

+
σ2
uwρx̃w̃βw

σx̃σw̃(1− ρ2x̃w̃)
,

Note that, when using OLS, the estimate is not going to be necessarily biased towards

zero. We also see that including w̃ in the instrumental variable regression adds a term in
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the bias expression that is proportional to the variance of the measurement error of w and

to its effect on the outcome. This makes clear that including w̃ will not necessarily bias

the IV estimate toward zero either. It also indicates that a researcher trying to address

a violation of the exclusion restriction by adding a regressor should not only be concerned

about potential unmeasured common causes of y and w (or reverse causality), but also about

measurement error in the added regressor.

The formula for the OLS asymptotic bias also makes clear that unlike in the case without

measurement error, a comparison of the relative biases with w included between estimators

is not straightforward. This is because the ratio of such biases depends on βx, βw, and

σuw , in addition to σε, ρx̃ε and ρw̃ε. This further highlights the difficulties of attempting to

address a violation of the exclusion restriction by adding a post-instrument covariate when

measurement error is an additional concern.

Application

To illustrate how these results can be applied, consider AJR, where the authors are interested

in estimating the effects of institutions on economic performance. Their dependent variable,

y, is GDP per capita in 1995. Their main explanatory variable, x, is an index of protection

against expropriation. An analysis based on OLS regressions is unlikely to give accurate es-

timates, since: 1) it is difficult to account for all common causes of institutions and economic

performance, 2) economic performance can determine the protection of property rights, and

3) the index against expropriation is measured with error and cannot capture all institutional

arrangements that lead to property right protection. To address these issues, AJR propose

as an instrument of the index of expropriation the mortality rates of settlers in the coloniza-

tion period, z. AJR argue that in places were Europeans faced higher mortality rates, they

could not settle and were more likely to impose extractive economic institutions—those that

impose property right protections only to the elites. The fact that powerful economic and
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Table 1: Point Estimates of the Effects of Institutions on Economic Performance

OLS IV

Explanatory variables (1) (2) (3)

Protection against expropriation (x) 0.46 0.94 0.74
Ethnolinguistic fragmentation (w) -1.3 -1.02

First stage results
Log European settler mortality (z) -0.61 -0.64

Column (1) corresponds to Model (7) Table 6 Panel C in
AJR, column (2) corresponds to Model (1) Table 4 Panels
A and B in AJR, and column (3) corresponds to Model
(7) from Table 6 Panels A and B in AJR.

political elites exert effective efforts to maintain the institutions that are favorable to them

explain why the settler mortality instrument would impact current indexes of expropriation.

AJR are aware of potential violations of the exclusion restriction and present as robustness

tests results in which they control for variables that capture alternative links between the

settler mortality rate and GDP per capita. One way in which the exclusion restriction can be

violated, for example, is through the potential impact of settler mortality on ethnolinguistic

fragmentation. Because ethnolinguistic fragmentation has been linked to the provision of

public goods, incidence of conflict, social capital, and directly to economic growth (Alesina

et al. 2003; Montalvo and Reynal-Querol 2005; Bjørnskov 2008); a potential impact of settler

mortality on fragmentation could bias the effect of interest. We consider AJR’s estimates

from Tables 4 and 6 and Appendix A, which we reproduce here in Table 1 and focus on the

regressions which include as a control a measure of ethnolinguistic fragmentation.1

Using their data, we compute ρzw, finding it positive, and ρzx̃−ρx̃w̃ρzw̃, which is negative.2

1Unlike many other papers that add post-instrument controls, AJR’s report OLS esti-

mates as well as IV results for all specifications, discuss whether the added regressors can be

correlated to the error term in the main model, and make available their data for replication.
2The computed values of these correlations and standard deviations are: ρx̃w̃ =
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Therefore, if we assume based on the literature findings (and as in AJR) that ρw̃ε < 0 and that

there is no measurement error in the added regressor (σuw = 0), Proposition 2 concurs with

the AJR analysis that the IV analysis including ethnolinguistic fragmentation has negative

bias.3

On the other hand, the difficulties of measuring fragmentation suggest that assuming no

measurement error might be too strong (Okediji 2005). If σuw 6= 0, Proposition 2 indicates

that when ethnolinguistic fragmentation has a negative effect on GDP (as suggested by the

literature), the second term of the plim of the IV with w̃ will be positive. Hence it is not

easy to determine the sign of the bias as it depends on the fragmentation effect (βw), the

confounding (ρwε), and the measurement error (σ2
uw).

Our results also allows us to explain possible sources of differences between OLS and IV

estimates. AJR’s OLS estimate is smaller than the IV estimate that conditions on ethnic

fractionalization and also that of the model that does not. AJR explain this difference as

a result of attenuation bias caused by measurement error in the institutions variable with

OLS. Using Proposition 2, we examine under what conditions measurement error is consistent

with those differences. An inspection of the plim for OLS in Proposition 2 together with our

computed correlations indicates that the third term in that expression is positive. Moreover,

the second term in the expression of the plim for OLS is likely positive as well, since ρx̃ε will

be positive and possibly larger than ρx̃w̃ ·ρw̃ε (we estimate ρx̃w̃ = −0.22). What would be the

minimum variance in the measurement error of the institutional variable that is consistent

with the observed differences between the OLS and IV estimates?

To answer that question, we set the two last (positive) terms in the expression of the plim

−0.22, ρzw̃ = 0.49, ρzx̃ = −0.52, σx̃ = 1.47, σw̃ = 0.32, which imply ρzx̃ − ρx̃w̃ρzw̃ = −0.41.
3Their analysis, included in Appendix A page 1396, differs from ours as it treats the

institutional variable as exogenous while the added covariate (ethnolinguistic fragmentation)

is correlated with the error term from the second stage.
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for OLS to zero. We then use AJR’s IV estimate in the model that includes ethnolinguistic

fragmentation in place of βx and solve for σ2
ux to obtain 0.77. This means that measurement

error must account for at least 35% (≈ 0.77
1.472

) of the variation in the observed institutions

variable to rationalize the difference between IV and the OLS estimates. Clearly, we could

have chosen a different estimate of βx to compute that minimum measurement error variance.

If we use instead AJR’s baseline estimate of 0.94, the measurement error in the institutions

variable must make up nearly 50% (≈ 1.05
1.472

) of the total variance.

It is important to note that the previous analysis relies on assumptions highlighted in

Proposition 2 that are in line with classical measurement error. It also relies on the as-

sumptions used in the linear constant-effect models of AJR and this paper. We do believe,

however, that these assumptions provide a first step to analyze this application in a way

that is consistent with reasonable scenarios for the situation of interest.

Discussion and conclusion

Instrumental variables regression methods allow researchers to address estimation challenges

like unobserved heterogeneity and classical measurement error. Whether the method delivers

accurate results depends on the tenability of its assumptions. Here, we have studied one

way in which researchers have dealt with potential violations of one of them, the exclusion

restriction. We find that although it is possible for researchers to fix violations of the

exclusion restriction by adding controls, doing so requires a number of strong assumptions.

When these do not hold, the IV estimates can be worse than what the researcher would

obtain running an OLS regression.

Our findings have a number of implications for practice. First, even when the linear

constant-effects model is used, the inclusion of a post-instrument covariate in 2SLS esti-

mation requires strong theoretical assumptions, and therefore, researchers may want to use
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alternative approaches. One of them is to focus on the estimated effect of the instrument (the

“reduced form effect”) which will not be invalidated by an exclusion restriction violation.

In many cases, when the IV analysis is questionable, this effect will have some theoretical

or policy relevance that could be emphasized. Another approach is to conduct a sensitivity

analysis with respect to the exclusion restriction (e.g. see Conley, Hansen and Rossi (2012)),

as the results might be robust to these violations.

Second, if conditioning on post-instrument covariates is conducted, the corresponding

OLS analysis should be reported and the measurement error and unmeasured common causes

in both approaches should be discussed in concert. The formulas presented here should help

with this discussion and depending on the application of interest, might give bounds for the

effect of interest.

Finally, we note that the entirety of this paper relies on the linear constant-effects model.

If the constant-effects model is not a reasonable approximation, then there are many potential

parameters of interest from an instrumental variables analysis (Imbens et al. 2014), and

assessment of exclusion restriction violations becomes more complicated. Flores and Flores-

Lagunes (2013) and Mealli and Pacini (2013) provide some strategies in this context and

also surveys of the literature.
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Montalvo, José G. and Marta Reynal-Querol. 2005. “Ethnic Polarization, Potential Conflict,

and Civil Wars.” American Economic Review 95(3):796–816.

Montgomery, Jacob M, Brendan Nyhan and Michelle Torres. 2018. “How conditioning on

posttreatment variables can ruin your experiment and what to do about it.” American

Journal of Political Science 62(3):760–775.

Morgan, Stephen L and Christopher Winship. 2015. Counterfactuals and causal inference.

Cambridge University Press.

18



Okediji, Tade O. 2005. “The Dynamics of Ethnic Fragmentation.” American Journal of

Economics and Sociology 64(2):637–662.

Pearl, Judea. 2013. “Linear models: A useful “microscope” for causal analysis.” Journal of

Causal Inference 1(1):155–170.

Polavieja, Javier G. 2015. “Capturing Culture: A New Method to Estimate Exogenous

Cultural Effects Using Migrant Populations.” American Sociological Review 80(1):166–

191.

Polavieja, Javier G. 2017. “Culture as a random treatment: a reply to Chou.” American

Sociological Review 82(2):444–450.

Rosenbaum, Paul R. 1984. “The consquences of adjustment for a concomitant variable that

has been affected by the treatment.” Journal of the Royal Statistical Society. Series A

(General) pp. 656–666.

Sharkey, Patrick, Gerard Torrats-Espinosa and Delaram Takyar. 2017. “Community and

the Crime Decline: The Causal Effect of Local Nonprofits on Violent Crime.” American

Sociological Review 82(6):1214–1240.

Swanson, Sonja A, James M. Robins, Matthew Miller and Miguel A. Hernán. 2015. “In-

strumental Variable Analyses and Selection Bias.” American Journal of Epidemiology

181(3):191–197.

VanHeuvelen, Tom. 2020. “The Right to Work, Power Resources, and Economic Inequality.”

American Journal of Sociology 125(5):1255–1302.

Vansteelandt, Stijn and Vanessa Didelez. 2018. “Improving the robustness and efficiency

of covariate-adjusted linear instrumental variable estimators.” Scandinavian Journal of

Statistics 45(4):941–961.

19



Wooldridge, Jeffrey M. 2010. Econometric Analysis of Cross Section and Panel Data. Cam-

bridge, MA: The MIT Press.

20


