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Abstract

When using instrumental variables, researchers often assume that causal effects are only
identified conditional on covariates. We show that the role of these covariates is often
unclear and that there exists confusion regarding their ability to mitigate violations
of the exclusion restriction. We explain when and how existing adjustment strategies
may lead to “post-instrument” bias. We then discuss assumptions that are sufficient
to identify various treatment effects when adjustment for post-instrument variables is
required. In general, these assumptions are highly restrictive, albeit they sometimes
are testable. We also show that other existing tests are possibly misleading. Then,
we introduce a sensitivity analysis that uses information on variables influenced by the
instrument to gauge the effect of potential violations of the exclusion restriction. We
illustrate it using a published study and summarize our results in easy-to-understand
guidelines.
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1 Introduction

Identification of causal effects using instrumental variables is a popular approach in both

experimental and observational research, and recent decades have seen an increasingly so-

phisticated understanding of what effects such instruments may identify. Based on the

seminal work by Angrist, Imbens and Rubin (1996), social scientists are nowadays aware

of the role that assumptions such as the exclusion restriction or first-stage monotonicity

play (Betz, Cook and Hollenbach 2018; Marshall 2016; Sovey and Green 2011). However,

we contend that the choice of covariates in instrumental variable (IV) identification is not

well-understood and leads to biases in applied research. Of special interest is the widespread

adjustment for “post-instrument” variables–variables influenced by the instrument–to ad-

dress a violation of the exclusion restriction, on which existing guidelines are either silent or

contradictory.

In this paper, we give straightforward advice for researchers on how to think about

covariates in the context of IV analysis and which of these need to be controlled for. To this

end, we uncover new identification results and subtleties, including with regards to (partial)

tests of identifying assumptions. Furthermore, we develop a semi-parametric sensitivity

analysis that aids applied researchers when there is a direct effect of an instrument that runs

over measured variables.

Our contribution is motivated by both the common practice and voiced concerns of re-

searchers who use instrumental variables. We have identified 154 papers published since 2010

in top political science journals that use IV and explicitly discuss the exclusion restriction.1

Among those, 39 (25%) use potential post-instrument covariates to justify the exclusion re-

striction.2 As we will show, this is a lower bound on the phenomenon: There may be other

1The American Political Science Review, the American Journal of Political Science, and

the Journal of Politics.

2See Appendix A. 22 of these papers mention the post-instrument nature of controls

1



papers that did not discuss relevant post-instrument covariates but should have considered

them.

Some researchers are aware that adjustment for variables on other paths from instru-

ment to outcome posits a thorny issue. For example, both Kern and Hainmueller (2009)

and Carnegie and Marinov (2017) use instrumental variables and two-stage least-squares

regression where they choose to not (always) control for such variables to avoid what they

call “post-treatment bias”. But there seems to be no justification for this in the literature,

which uses this term for biases that are introduced in standard adjustment identification

strategies, where instruments play no role (Rosenbaum 1984; Angrist and Pischke 2009;

Montgomery, Nyhan and Torres 2018). On the other hand, Wucherpfennig, Hunziker and

Cederman (2016), for example, claim that “the instrumental variable logic is immune to any

correlation (and even causation) between the instruments and the covariates”. A leading

econometrics textbook similarly advises simply controlling for covariates influenced by the

instrument (Wooldridge 2010, 94, 938). Other standard textbooks like Angrist and Pischke

(2009) and reader’s guides like Sovey and Green (2011) do not discuss such issues.

To fix ideas, consider an example from Angrist (1990), whose identification strategy has

inspired several studies of political behavior (Berinsky and Chatfield 2015). The author is

interested in estimating the effect of serving in the Vietnam War on earnings. The draft was

largely determined by a randomized lottery, and Angrist notes that men with a low draft

lottery number were more likely to serve in the war. He uses functions of this number as

instruments for military service.

There may be concerns about the validity of the exclusion restriction. For example, those

who received a low lottery number may have chosen to stay in school to obtain a deferment

explicitly. E.g., “I also control for possible direct channels”(Boix 2011, 818); “this channel

is directly accounted for” (Ahmed 2012, 160). Felton and Stewart (2022) review IV papers

published in top sociology journals and assess that 27 out of 34 include potential post-

instrument covariates.
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(Angrist 1990, 330). This creates a link between the lottery and earnings via education.

Therefore, if information on post-lottery education was available, should we control for it?

In this paper, we answer this question and discuss various related problems. We use

both potential outcomes and directed acyclic graphs (Pearl 2009) in our formal analysis.

This allows us to provide straightforward advice to applied researchers. First, we clarify

the asymmetric role of pre- and post-instrumental variables. Then, we illustrate how ad-

justment for variables influenced by the instrument may not always be successful, and that

adjustment for variables influenced by the treatment will lead to biases in IV identification

even when the IV is unconditionally valid. The mechanics behind these phenomena resemble

the better-known “post-treatment” bias in adjustment strategies (Montgomery, Nyhan and

Torres 2018), although additional, more subtle problems arise.

The main intuition is as follows. Instrumental variables estimators adjusted for a post-

instrument covariate compare observations with different values on the instrument but

the same values on the post-instrument variable, even though the variation in the instru-

ment produces variation in the latter variable. Therefore, other omitted causes of the

post-instrumental variable need to vary across these observations. Otherwise, the post-

instrumental variable would not have materialized to have the same value. Accordingly,

the omitted causes co-vary with the instrument. Insofar as these omitted causes affect the

outcome, this creates a non-causal link between instrument and outcome that leads to bias.

Notably, this can occur even if the post-instrumental variable is exogenous conditional on

the treatment, unlike in the standard post-treatment bias case.

However, we also show that adjustment for variables influenced by the instrument is

sometimes necessary for successful identification when the post-instrumental variable is not

impacted by unobserved confounders. In some cases, we show that this identifies the well-

known “local” or a weighted average treatment effect. For other cases, we propose to identify

a new, different treatment effect. In sum, “post-instrument bias” is quite different from

“post-treatment bias”, where adjustment can only hurt and never helps.
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The assumptions for valid post-instrument adjustment are highly restrictive, although

we also prove that they are testable under some circumstances. In this context, we discuss

the evidential value and implicit causal assumptions of other informal tests and robustness

checks that are prevalent in the applied literature. We show that these tests are possibly

misleading.

What if the strong assumption necessary for identification are not plausible or rejected

by the data? We propose that researchers utilize measures of the variable on the pathway

from the instrument to the outcome for a semi-parametric sensitivity analysis. Our approach

generalizes previous approaches (Conley, Hansen and Rossi 2012; Van Kippersluis and Ri-

etveld 2018) that operate under a strong effect homogeneity assumption and cannot use

sample information to bound biases. We illustrate our approach by reanalyzing the data

of Hong, Park and Yang (2023) on the long-term effects of a rural development program

on voting behavior in South Korea. The application highlights the need to relax stringent

linearity assumptions and to account for potential heterogeneity in causal effects. We make

our methodology available as an R package.

A formal analysis of violations to the exclusion restriction was already provided in the

seminal paper by Angrist, Imbens and Rubin (1996), but similar to Conley, Hansen and Rossi

(2012) and Van Kippersluis and Rietveld (2018), it did not incorporate post-instrument

variables. Glynn, Rueda and Schuessler (2024) analyze post-instrument bias using linear

constant-effect models, as do Deuchert and Huber (2017). In contrast, we discuss these is-

sues in a completely nonparametric framework and integrate causal graphs with the potential

outcomes approach. We show that Glynn et al.’s result about the magnitude of biases from

the constant-effect case does not generalize once one allows for heterogeneous effects. Fur-

thermore, we discuss additional identification assumptions, prove that these are sometimes

testable, introduce a new causal estimand, and develop a new sensitivity analysis.

Deuchert and Huber (2017) point out that investigating instruments that may affect

more than one variable is also highly relevant because oftentimes the same instrument is
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used to study causal effects of different treatment variables so that researchers might be

tempted to adjust for these other treatments. For example, Mellon (2024) points out that

weather-related variables like measures of rainfall are often used as instruments for various

relationships, but have been linked empirically to close to 200 variables, each of which consti-

tutes a potential violation to the exclusion restriction. Some of the problems that we discuss

are similar to what Elwert and Segarra (2022) calls “endogenous selection bias”, and Betz,

Cook and Hollenbach (2018), Imai and Kim (2019) and Eggers, Tuñón and Dafoe (2024)

also use causal graphs to illustrate (failures of) IV identification. Our sensitivity analysis

complements the approaches by Conley, Hansen and Rossi (2012) and Cinelli and Hazlett

(2022) that cannot incorporate information on post-instrument covariates. Among other

things, this entails that our sensitivity analysis can make estimates more robust (i.e., move

farther away from zero into the direction implied by the original estimate), which we also

show in our application.

2 Understanding conditional IV identification using causal

graphs

In this section, we present a series of causal graphs that allow for IV identification of various

treatment effects when the key “ignorability” assumption only holds conditionally. We use

causal graphs because they offer a straightforward formalization of the language already used

by many researchers to communicate assumptions about the causal ordering of variables, di-

rect and indirect effects, confounding, etc. Additionally, they can be integrated with the

popular potential outcomes approach to causality, and allow for a derivation of assumptions

on the distribution of these potential outcomes. Specifically, we interpret graphs as nonpara-

metric structural equation models, as in Imai and Kim (2019). We expand on such formal

aspects in Appendix B.
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2.1 A first causal graph for our running example

Consider again our example from Angrist (1990)’s seminal analysis. Angrist is interested in

the causal effect of serving as a soldier in the Vietnam war (Di) on later earnings Yi. The

draft lottery leads to a binary instrument Zi that indicates draft eligibility.

The “ceiling” for the draft varied due to fluctuating demands by the military. Therefore,

the cohort Xi of a man influenced the probability that he would be drafted. At the same

time, birth year is clearly causally prior to the draft and might have other effects on the

outcome. This can easily be depicted in a causal graph such as Figure 1.

The dashed arrows emanating from the Ui-variable indicate that it stands for unobserved

variables that may (directly) influence treatment, outcome, and covariates Xi, but not the

instrument. In the Vietnam draft example, Ui may contain variables describing the socio-

economic status (SES) of one’s parents. These will impact on the decision to enlist in

the military and on later socio-economic outcomes. They may also affect the timing of

birth. The existence of such unobserved confounders is the central motivation for employing

IV identification because they make identification of the effect of Di on Yi via regression

impossible. With this first example in mind, we now discuss basic quantities of interests and

identification assumptions in the potential outcomes framework.

Zi Di

Ui

Yi

Xi

Figure 1: Benchmark graph. In this graph, Zi is an instrument for the effect of Di on Yi
conditional on Xi, but not unconditionally.

2.2 IV identification in the potential outcomes framework

We will discuss the identification of variants of a local average treatment effect (LATE):

E[Yi(D = 1)− Yi(Di = 0)|Di(Zi = 1) > Di(Zi = 0), Xi]
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Here Yi(D = d) is the potential outcome of Y in unit i when Di is set to d, and Di(Zi = z)

is the potential outcome of D in unit i when Zi is set to z. Therefore, this expression defines

the average causal effect of a binary treatment Di on outcome Yi among those individuals 1)

for which an instrument Zi changes treatment status (compliers) and 2) which are character-

ized by covariate profile Xi. Throughout this paper, we assume that there are no spillovers,

i.e., the treatment or instrument of one unit does not affect other unit’s variables.

What if treatment is continuous, as is the case in our application study? First write the

causal effect of instrument on treatment as Di(Z = 1) − Di(Z = 0) = αi. If the causal

(“structural”) equation of interest has heterogeneous effects, but otherwise is linear, as in

Yi = µY + βiDi + εi,

then the parameter of interest is usually (e.g., Angrist and Pischke (2009, 186–187))

E[αiβi]

E[αi]
= E

[
αi

E[αi]
βi

]
. (1)

Here,
αi

E[αi]
can be understood as individual-level weights of the treatment effects βi.

Conventionally, three assumptions are used to identify such treatment effects. These

are often discussed for the case of binary instrument and treatment, although they easily

generalize. The first assumption, monotonicity, assumes that

P (Di(Zi = 1) ≥ Di(Zi = 0)) = 1.

That is, the instrument has a causal effect on the treatment that pushes every unit in

the same direction, and there are no “defiers”. If this holds, αi ≥ 0 so that the expression

in equation 1 is a weighted average of individual-treatment effects βi, where the weights are

all greater than or equal to zero.
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Secondly, it is assumed that Zi and Di are dependent (“relevance”):

E[Di|Zi = 1, Xi]− E[Di|Zi = 0, Xi] 6= 0,

which is directly testable. In this paper, we will focus on understanding the crucial condi-

tional independence assumption (CIA)

Yi(Di = d), Di(Zi = z)⊥⊥Zi|Xi

In words, this assumptions states that the potential outcome of outcome Yi when treatment

Di is set to d and the potential outcome of Di when instrument Zi is set to z are jointly

independent from Zi, given covariates Xi.

If these assumptions - CIA, monotonicity, and relevance - hold, two-stage least squares

with saturated models in both stages estimates a weighted average of Xi-specific LATEs, and

this or linear unsaturated models are dominant in applied research (Angrist and Imbens 1995;

Angrist and Pischke 2009, 177). Notably, the CIA subsumes both the exclusion restriction

and the more opaque “ignorability” requirement. We use graphs to illustrate when this

latter assumption hold, and will usually discuss the “causal first-stage” assumption Di(Z =

z)⊥⊥Zi|Xi separately from the Yi(Di = d)⊥⊥Zi|Xi requirement, since this is more intuitive.

Formal derivations of the joint independence and other proofs are in Appendix C.

2.3 Identification with pre-instrument covariates

We start with Figure 1 as a benchmark graph. In this graph, the treatment and outcome are

driven by unobserved confounders Ui, while there are also observed confounders Xi that may

influence the instrument, treatment, and outcome. A first important insight is that this will

not be the case when Zi is physically and unconditionally randomized, because this precludes

the Xi → Zi path. However, if there are such observed confounders, adjustment for them is

necessary. Intuitively, a first-stage regression of Di on Zi only would not give the causal effect
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of Zi on Di because of the open “back-door” paths Zi ← Xi → Di and Zi ← Xi ← Ui → Di.

Similarly, the instrument and the outcome would be connected through a path other than

the effect going through Di. Conditioning on Xi solves both problems, because Xi “blocks”

these spurious paths.

Here, the CIA would not hold if at least one of two key conditions are violated. First, it

may be that the confounders Ui also influence the instrument Zi. In this case, Zi and Ui are

dependent, and conditioning on Xi does not break this dependence. This is the problem of

“back-door paths” which has found extensive treatment in the graphical literature (Shpitser,

VanderWeele and Robins 2010).

Second, Zi may have an effect on Yi going not through Di, which violates the “exclusion

restriction”. In this case, one can think of the potential outcomes as being determined by

the equation (see Appendix B)

Yi(Di = d) = fy(d, Zi, Xi, Ui)

which clearly depends on Zi, so that the CIA is violated.

In the following, we will assume that observed pre-instrument covariates Xi may exist,

and that conditioning on them solves the “back-door” problem. Specifically, this will even

hold if Ui influences Xi (so that the effects of variables in Xi are not identified). This relaxes

the common restriction for all Xi variables to be “exogenous” (e.g. Wooldridge 2010, 110),

and differentiates such control variables from the post-instrument variables we discuss next.

For ease of visual presentation, we will not depict the Xi nodes in the causal graphs that we

discuss in the remainder of this article.

2.4 Identification with post-instrument covariates

We now discuss a variety of situations in which researchers measure covariates Mi that are

influenced by the instrument, that influence the outcome, and that may also influence or
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be influenced by the treatment.3 Our main result is that identification of a local average

treatment effect is possible in some cases under strong assumptions. It turns out that

identification relies on adjustment for the Mi covariates, even if they also influence the

treatment. For the latter case, we introduce a new causal estimand and show how it is

identified. Accordingly, “post-instrument” bias does not generally occur but depends on the

causal model. Additionally, ruling out causation between Di and Mi allows for a test of the

identification assumptions which is easy to implement. We discuss other, informal tests in

the literature and show that these are possibly misleading.

In the Vietnam draft example, a potential Mi variable is college education, because the

latter may have been used to avoid the draft, and because it plausibly affects earnings. The

textbook by Wooldridge (2010, 938) discusses this complication and claims that statistical

adjustment for such a variable Mi “effectively solves this problem”. In the following, we

show that this statement needs considerable qualification.

2.4.1 Post-instrument variable not impacted by unobserved confounders

A simple case is shown in graph a) in Figure 2, where the variable Mi is influenced by the

instrument Zi and in turn is a cause of Yi. However, neither does Di drive Mi, nor does Mi

influence Di, nor is Ui influencing Mi. Can we then simply control for the “post-instrument”

variable Mi to make the instrumental variable approach work?

It turns out that under the restrictive assumptions visualized in graph a), this condition-

ing strategy indeed identifies an (Xi,Mi)-specific LATE or weighted ATE as in equation 1,

since the CIA holds with conditioning set (Xi,Mi). To see why, consider the first-stage effect

of Zi on Di. Although Mi is “post-instrument” - i.e., influenced by Zi - conditioning on it

does not invalidate the ignorability of Zi with regards to Di, i.e. Di(Zi = z)⊥⊥Zi|Xi,Mi

holds. Intuitively, there is no “back-door” path from Zi to Di not blocked by Xi, and con-

3Our results only hold for acyclic graphs. This means that researchers need to rule out

mutual causality between variables a priori.
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Zi Di

Ui

Yi

Mi

(a)

Zi Di

Ui

Yi

Mi

(b)

Zi Di

Ui

Yi

Mi

(c)

Figure 2: Three scenarios for relationships between candidate instrument Zi and post-
instrument variable Mi. In graph a), conditioning on Mi is required and identifies a local
effect of Di on Yi. In graph b), neither unadjusted nor adjusted IV estimators identify a
causal effect. Without control for Mi, there is a direct effect of the instrument. However,
conditioning on the collider Mi opens a non-causal path between Ui and Zi. In graph c), IV
identification is possible only when not conditioning on Mi. Mi is a descendant of collider
Di and conditioning on it creates a non-causal dependence between Zi and Ui

ditioning on Mi does not block any genuinely causal paths, nor does it open up any new

spurious paths, since it is not a “collider”. In a similar vein, the potential outcome Yi(Di = d)

is now determined by Mi, Xi, Ui as

Yi(Di = d) = fy(d,Mi, Xi, Ui),

and is independent from Zi conditional on Mi and Xi. This is because the direct path
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through Mi is blocked while no other paths are opened up.4

There are two crucial assumptions for the validity of this approach that may be violated

which we now discuss in turn.

2.4.2 Post-instrument variable directly impacted by unobserved confounders

First, it may be that Mi is also driven by the unobserved confounder Ui. This situation is

depicted in graph b) of Figure 2. In our running example, it is quite easy to imagine that

unobserved parental SES (Ui) positively influences the choice to go to college directly (Mi).

In this case, Mi becomes a “collider”, and conditioning on it creates a statistical dependence

between Zi and Ui.

Specifically, in the “reduced-form” regression of Yi on Zi, we would compare draftees

(Zi = 1) to non-draftees (Zi = 0), given the same college decision Mi = m. If Zi affects

the college decision, then the fact that the latter is observed to be constant across groups

must be due to individual differences in Ui, which then affect Yi irrespective of an actual

treatment effect. E.g., draftees that did not attend college to avoid the draft probably

had lower parental SES than non-draftees, and lower wages Yi for that reason alone–even if

neither treatment nor college affected earnings.

This open “non-causal” path then actually invalidates both the first-stage Di(Zi =

z)⊥⊥Zi|Xi,Mi assumption due to post-treatment selection bias,5 as well as the Yi(Di =

d)⊥⊥Zi|Xi,Mi assumption.

In situations described by this graph, both unadjusted and adjusted IV estimators are

biased (inconsistent). How do these biases compare? Glynn, Rueda and Schuessler (2024)

show, using linear models, that biases are proportional to the strength of the association

between the instrument and the post-instrument variable multiplied with the effect of Mi

4See Appendices B and C for a more detailed explanation of this formal argument.

5For an in-depth analysis of this phenomenon in standard adjustment strategies in polit-

ical science, see Montgomery, Nyhan and Torres (2018).
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on Yi (unadjusted estimator) or the endogeneity of Mi (adjusted estimator), divided by the

strength of the instrument with respect to the treatment Di.
6 This appears intuitive: If

Zi and Mi are only weakly related even if one adjusts for the strength of the IV (an issue

to which we return below), the potential for bias should generally be low. Similarly, if the

causal effect of Mi on Yi is small, the direct effect of Zi, and hence the bias of the unadjusted

estimator, should be small, too. However, these results from the linear case–that imposes an

assumption of no effect heterogeneity–do not generalize. We will later show analytically that

with heterogeneous effects, the unadjusted estimator may be biased even if the mean effects

of Zi on Mi or of Mi on Yi (or both) are zero. Furthermore, in Appendix D, we analyze the

biases in more detail from a potential outcomes perspective and show that even if the effect

of Zi on Mi is small, the bias of the adjusted estimator can also be large. Consistent with

this, we show that, in our application study, unadjusted and adjusted IV estimates barely

differ, yet our sensitivity analysis points towards potential biases.

2.4.3 Post-instrument variable directly impacted by treatment

The second crucial identification assumption concerns the relationship between treatment

and adjustment variable. Even if Zi does not directly drive Mi, the latter may be influenced

by the treatment Di, as in graph c) of Figure 2. In this case, Mi is a mediator of the Di → Yi

relationship, and is also influenced by Zi indirectly through Di. For example, Mi could stand

for mental and physical health, civilian work experience, or access to veterans’ benefits. In

this case, Zi is a valid instrument when one does not adjust for Mi. This is because the

exclusion restriction obviously holds, and there are also no other back-door paths which

connect Zi and Yi. However, adjusting for Mi introduces a severe, but more subtle problem.

In the “reduced-form” regression of Yi on Zi controlling for Mi, we would again compare

6Accordingly, the biases of the two different estimators are possibly of the same order of

magnitude, unlike in the linear “M-bias” case, where the bias of the adjusted estimator is of

a higher order (smaller) (Ding and Miratrix 2015).
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individuals with different values for Zi, but the same Mi. Then, observed differences in Yi

may be due to differences in unobserved Ui that are now mediated through Di, and not due

to a causal effect of Di. E.g., we could compare draftees to non-draftees with equally sound

mental health post-Vietnam. Because of the deleterious impact of active military service on

mental health, it would appear likely that all of them had in fact not served in Vietnam,

despite the differences in draft status. Accordingly, unobserved causes Ui would be lower for

those who were drafted (Zi = 1), explaining why they did not serve after all (Di = 0), than

for those who were not drafted. Therefore, Zi and Ui would co-vary, creating a non-causal

link between the instrument and the outcome. More formally, d-separation—explained in

more detail in Appendix B—does not only prohibit to condition on “colliders” to block

paths, but also to condition on descendants of such variables. Since Zi and Ui collide in Di,

conditioning on its “child” Mi has the same qualitative consequences as in graph b), making

it impossible to identify the ATE of Zi on Di or the LATE of Di on Yi.

This subtle problem went unnoticed by Deuchert and Huber (2017, 416), who discuss a

similar graph and state that conditioning on a mediator identifies a “partial direct effect”

(Wooldridge (2010, 95) appears to make a similar suggestion). As we hope we have made

clear, this is not the case, because conditioning on a mediator renders Zi correlated with

Ui, invalidating its use as an instrument. Interestingly, this occurs here even though the

mediator is exogenous conditional on Di. That is, a suitable regression of Yi on Di and Mi

identifies the average causal effect of Mi. This shows that an analyst using such a regression

as the baseline model for the effect of Di and then using an otherwise valid instrument to

address concerns about the endogeneity of Di (but not of Mi) introduces problems by simply

mirroring the set of control variables. Whenever analysts consider an IV strategy, they need

to reanalyse the choice of control variable based on a causal model.7

An interesting special case of graph c) of Figure 2 is when Mi stands for the inclusion

7Frölich and Huber (2017) propose to identify mediation effects in such a setting using

an instrument influencing Di and a separate instrument influencing Mi.
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of an observation in the dataset (or, reversely, for attrition). In both observational and

experimental studies, participants often drop out based on the realization of their treatment

or their data is selectively reported due to administrative reasons (Knox, Lowe and Mummolo

2020). Researchers are then forced to condition on Mi. In IV settings, even if Mi is not

directly driven by Ui and does not influence Yi, it is a descendant of the collider Di, so

that the instrumental variable becomes invalid. Similarly, in Angrist (1990), it is noted

that reported earnings are censored. This means one conditions on a descendant of the true

unobserved earnings so that the IV becomes invalid, a fact acknowledged by Angrist (1990,

334). Berinsky and Chatfield (2015) discuss this and related selection problems that may

occur for the draft lottery instrument.8

2.4.4 Post-instrument variable impacts on treatment, but is unrelated to con-

founders

A final possible set of causal assumptions is depicted in graph 3. In this graph, Mi is not

influenced by the confounder Ui, but affects Di. Again, the no-confounding assumption is

crucial. If it is violated, a collider phenomenon would occur as in the previous cases, making

Zi an invalid instrument. However, if such confounding can be ruled out, one can identify a

local ATE:

E[Yi(Di = 1)− Yi(Di = 0)|Di(Zi = 1,Mi = m) > Di(Zi = 0,Mi = m), Xi]

This estimand has not been discussed before. It is the average causal effect of a binary treat-

ment for the latent subpopulation of units which 1) change treatment status as a response

8See Elwert and Segarra (2022) for an analysis of this problem under a linearity assump-

tion.
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to the instrument Zi, while fixing Mi at m and 2) which are characterized by covariates Xi.
9

Zi Di

Ui

Yi

Mi

Figure 3: Graph where adjustment for Mi is necessary to identify a local average treatment
effect.

The intuition behind this identification result is that under the assumptions in graph

3, one can actually identify the “controlled direct” effect of Zi on Di while fixing Mi. For

those individuals that shift their treatment uptake as a result of this hypothetical joint

intervention, the effect of Di on Yi is then also identified. There are additional relevance

and monotonicity assumptions needed. We discuss these in more detail in Appendices C and

E.6.

We summarize all of these identification results in the following proposition:

Proposition Under the assumptions in graph a) of Figure 2, the CIA

Di(Zi = z), Yi(Di = d)⊥⊥Zi|Xi,Mi

holds and under the usual monotonicity and relevance assumption, the LATE estimand

E[Yi(Di = 1)− Yi(Di = 0)|Di(Zi = 1) > Di(Zi = 0), Xi,Mi]

is identified.

Under the assumptions depicted in graphs b) of Figure 2, the CIA does not hold with

any conditioning set.

9Blackwell (2017) discusses related quantities where Mi would be a second randomized

instrument that does not affect Yi directly.
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Under the assumptions depicted in graphs c) of Figure 2, the CIA does hold conditional

on Xi, but not conditional on Mi.

Under the assumptions depicted in Figure 3, the CIA

Di(Zi = z,Mi = m), Yi(Di = d)⊥⊥Zi|Xi,Mi

holds. If additionally P (Di(Zi = 1,Mi = m) ≥ Di(Zi = 0,Mi = m)|Xi) = 1 (“partial”

monotonicity) and E[Di|Zi = 1,Mi = m,Xi] − E[Di|Zi = 0,Mi = m,Xi] 6= 0 (relevance)

hold, the LATE estimand

E[Yi(Di = 1)− Yi(Di = 0)|Di(Zi = 1,Mi = m) > Di(Zi = 0,Mi = m), Xi]

is identified.

Proof: See Appendix C.

2.5 Judging and testing the causal assumptions

In sum, what are the implications of these results for applied researchers if they suspect

that Zi influences Mi? We emphasize that only the restrictive sets of assumptions in Figure

2 a) and Figure 3 allow for IV identification by conditioning on Xi and Mi. Again, if

researchers think that the instrument may influence Yi through variables Mi, they need to

rule out confounders that directly affect Mi and Yi. We also emphasize that researchers must

not condition on mediators of the Di → Yi relationship. This causes inconsistencies even

when instruments are unconditionally valid. We now discuss the validity of robustness and

diagnostic tests employed by researchers facing post-instrument variables.

Kern and Hainmueller (2009), Wucherpfennig, Hunziker and Cederman (2016), and

Spenkuch and Tillmann (2018), among others, acknowledge the possibility of post-instrument

variables, and try to mitigate such concerns by adjusting for these as a robustness test. They
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report that estimates under either adjustment set are similar. This is also the case in our

application study. Such a testing strategy is informative insofar as it rules out that the biases

of the two different estimators are unequal. Finding that estimates are indeed similar, the

remaining possibilities then are that the biases happen to be non-zero, but equal, or simply

are both zero. Therefore, the probability that biases are both zero increases. Yet we main-

tain that analysts should never assign a zero probability to a scenario where the different IV

estimators have biases of a similar magnitude. Our sensitivity analysis adds evidence in this

cases.

Furthermore, a problem with this testing strategy is that if one finds that estimates

are not equal, one may erroneously declare the main result to be not robust. This is the

case whenever the IV is unconditionally valid but invalid conditional on Mi, as in Figure

2 c), where Mi is a mediator on the pathway from Di to Yi. In such cases, the adjusted

IV estimator will generally differ, but this is because conditioning on Mi introduces biases

where none were before. Accordingly, such robustness tests need to be guided by an analysis

of a specific DAG.

A second approach is to inspect the correlation between Zi and Mi. Researchers often

report that this association is not significant and that the instrument is therefore uncondi-

tionally valid. However, the bias introduced by direct effects running over post-instrument

variables increases as the instrument becomes weaker with respect to the treatment, as dis-

cussed below, which such tests do not address. Accordingly, small insignificant correlations

may become larger and significant once one adjusts for the first-stage relationship between

instrument and treatment. This is the case in our application study. Additionally, even

small effects of Zi on Mi can introduce bias when the effect of Mi on Yi is large, as shown

below.

One situation in which causal assumptions we have proposed are sharp enough that they

allow for a valid test is graph a) of Figure 2. In this graph, Di and Mi are connected via the

Di ← Z →Mi path, and additional blocked paths running over the collider Yi. Accordingly,
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Zi (and Xi, as usual) d-separate Di and Mi, and these two variables should therefore be

conditionally independent in the population. This can be tested by estimating the first-

stage regressionE[Di|Mi, Zi, Xi]. However, the focus normally rests on the partial association

between the instrument Zi and Di (for testing whether the instrument is weak), while the test

we propose rests on the partial association between the post-instrument variable Mi and Di.

Specifically, graph a) of Figure 2 suggests that the coefficient of a linear regression of Di on

Mi, controlling for Zi and Xi, is zero (assuming correct regression specification and standard

errors). If researchers commit to this graph, they should use an equivalence test in order

to provide evidence for this zero association (Hartman and Hidalgo 2018), for example by

determining whether the 90% confidence interval lies entirely within a range of associations

that are negligible (at α = 0.05). This test (which will we call the “diagnostic test”) may seem

counter-intuitive at first glance because it does not directly check for associations between

the instrument and other variables. However, it is the only test that can be justified by

relatively weak assumptions. We note that tests for ignorability of the treatment using

proxies of unobserved confounders take a similar indirect route (White and Chalak 2010). If

the test fails, at least one open path between Di and Mi must exist, as in Figure 2 b) and

c) or Figure 3.

3 A new sensitivity analysis

We have shown that instruments for a causal effect may not be valid when they affect other

variables that affect the outcome of interest and are also driven by unobserved confounders.

Specifically, conditioning on these other variables Mi oftentimes will not achieve identifica-

tion. This is the case in Figure 2 b). Identification is possible in the DAGs in Figures 2 a)

(with control for Mi, if the diagnostic test passes), 2 c) (without control for Mi), or Figure 3

(with control for Mi). Analysts need to make a theoretical argument for why such a specific

DAG appears plausible. If it does not, we propose a new semi-parametric sensitivity analysis
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for situations such as in Figure 2 b). Our approach is based on the fact that we can often

assess the effect of the instrument on the Mi variable, which provides useful information to

bound the bias introduced by the direct effect of the instrument. This goes beyond other

approaches (Conley, Hansen and Rossi 2012; Van Kippersluis and Rietveld 2018; Cinelli and

Hazlett 2022) that cannot use information on post-instrument covariates. An interesting

corollary of our approach is that for at least some choices of the sensitivity parameters,

estimates are guaranteed to become more robust (i.e., move further away from zero into

the direction of the original point estimate). Furthermore, we relax parametric assumptions

(e.g., constant effects) that are often made in the literature. We present two different mod-

els: First, a model for situations where instrument, treatment, and post-instrument variable

are binary. Then, there is only one sensitivity parameter. Second, a model for a binary

instrument, but possibly continuous treatment and post-instrument variable. Then, there

are two sensitivity parameters. We extend our approach to multiple arbitrarily distributed

instruments in Appendix E.3.

3.1 Model 1: Binary variables

When Zi, Di, and Mi are all binary, one can perform sensitivity analysis under relatively

weak parametric restrictions. The resulting estimation approach is a special case of our

second approach described in the next section.

Our model for Yi looks as follows:

Yi = µY + βiDi + γiMi + λ
′

1iXi + ε1i. (2)

In this model, all causal effects vary across individuals in a fairly unrestricted fashion,

and so are random variables (see Imai and Yamamoto (2013) for a similar setup). Xi is a

vector of controls. We assume E[ε1i] = 0 without loss of generality. In Appendix E, we

show that when Di and Mi are binary and further exogeneity and monotonicity assumptions
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discussed below hold, the standard LATE conditional on Xi can be expressed as

E[Yi|Zi = 1, Xi]− E[Yi|Zi = 0, Xi]

E[Di|Zi = 1, Xi]− E[Di|Z = 0, Xi]
−

E[γi|Mi(Zi = 1) > Mi(Zi = 0)]× E[Mi|Zi = 1, Xi]− E[Mi|Z = 0, Xi]

E[Di|Zi = 1, Xi]− E[Di|Z = 0, Xi]
.

(3)

In this expression, the first term can be estimated by a standard two-stage least squares

regression that completely ignores Mi, with outcome Yi, treatment Di, instrument Zi, and

controls Xi. The second term is the asymptotic bias introduced by direct effects of the

instrument through Mi. It consists of the average causal effect of Mi on Yi (γi) for units for

which Zi has an effect on Mi. This is the unknown sensitivity parameter. It is multiplied by a

term that can be estimated via another standard two-stage least squares regression, but now

with outcome Mi. Here, the numerator equals the average effect of Zi on Mi, which (under

monotonicity) is equal to the share of units for which Zi has an effect on Mi. The larger

this effect, the larger the bias. The denominator is the first-stage of the main regression

and equals the share of units for which the instrument has an effect on the treatment. The

smaller this quantity, the weaker the instrument is for Di, and the larger the bias through

direct effects is.

An important insight from this bias decomposition is that the association between Zi

and Mi may be small, but the bias nonetheless large if the instrument is weakly associated

with Di. This is on top of other problems associated with weak instruments which occur in

finite samples (Bound, Jaeger and Baker 1995). However, it is also clear that if one chooses

the sign of the sensitivity parameter such that the bias term is of the opposite sign as the

first term (the naive estimate), the resulting estimate will actually be in the same direction

and larger than the naive estimate. Accordingly, original estimates will become more robust

for some choices of the sensitivity parameter.

While the causal model for Yi in equation 2 restricts interactions between the observed
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variables, we make no assumption on the causal models for Di and Mi, except that the effect

of Zi is “monotone” in both.10 Therefore, this approach is quite general, although with

continuous X modeling will be necessary.

3.2 Model 2: Binary IV, Continuous Treatment and Post-Instrument

Variable

With continuous Di or Mi, the previous bias decomposition is not valid. Here, one must

instead make further assumptions on the causal models for Di and Mi. Consistent with our

model for Yi, we assume that

Di = µD + αiZi + πiMi + λ
′

2iXi + ε2i (4)

Mi = µM + δiZi + λ
′

3iXi + ε3i. (5)

Importantly, the causal model defined by all three equations is consistent with graphs a)

and b) graphs in Figure 2 and additionally allows for Mi to affect Di.
11

We make a series of further assumptions, which are enumerated in Appendix E. Here,

we give an intuitive summary. The first assumption follows from graphs a) and b) in Figure

10One could in fact allow for interactions between Di and Mi in the model in equation

2. The interaction term would be a second sensitivity parameter that is multiplied with the

estimable share of “joint compliers”, P (Di(Zi = 1)Mi(Zi = 1) > Di(Zi = 0)Mi(Zi = 0)). See

Blackwell (2017). Since applied researchers using IV regressions rarely specify interactions

between treatment and covariates and allowing for them in our second sensitivity model

increases complexity even more, we do not pursue this here.

11In graph c), a sensitivity analysis would only be necessary if Zi affected Mi directly.

However, βi would then no longer describe the total effect of Di, which is of primary interest

in most analyses.
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2. It requires that there are no unblocked back-door paths from Zi to any of Di,Mi, Yi, and

that there is no direct effect of Zi on Yi save for the effects through Di and Mi. The second

assumption states that Zi affects Di monotonically, which again is a standard assumption.

The third assumption requires Zi to also affect Mi monotonically. Both monotonicity as-

sumptions restrict πi, so that in most situations arguments for one of these to be plausible

also make the other plausible. However, they are logically independent (we expand on this

in Appendix E.6). Finally, for our second sensitivity model, we assume that the covariance

of the potential outcomes M(0),M(1) is non-negative. This assumption allows us to use the

data to bound a parameter and effectively decreases the width (but not the midpoint) of the

resulting bounds. If analysts are not willing to impose this assumption and they find a large

mean effect of Zi on Mi, we suggest that they allow for larger values of the second sensitivity

parameter σγi than is otherwise plausible. We discuss this in more detail in Appendix E.5.

Under these assumptions, we show in Appendix E that one can bound the weighted

causal effect of Di on Yi, E

[
αi + δiπi

E[αi + δiπi]
βi

]
. The bias term becomes

E[δiγi] = E[δi]E[γi] + cov(δi, γi). (6)

Here, E[δi] is the average causal effect of Z on M (equal to the share of Mi-compliers),

which can be estimated from the data. E[γi] is the direct effect of M on Y , which is the first

sensitivity parameter.12 If treatment effects were constant, it would be the only unknown.

However, if treatment effects vary and unobserved confounders impact on both M and Y , the

individual-level effects δi and γi will be correlated, and the covariance term will be different

from zero (Glynn 2012). This shows that even if there is no mean causal effect of Zi on Mi

or Mi on Yi, the unadjusted IV estimator may still be biased.

For example, in the Vietnam draft study, if unobserved parental SES Ui influences the

12To connect this to the first sensitivity model, note that with Mi continuous, δi is con-

tinuous as well so that P (δi = 0) = 0, and, due to monotonicity, E[γi] = E[γi|δi > 0].
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decision to attend college (Mi) as well as later wages (Yi), it is plausible that lower parental

SES makes both effects in question larger, and thereby creates a positive covariance between

them. For example, for men with low parental SES, the effect of the draft on attending college

(δi) will be relatively large (because they are more likely to be at the margin when it comes

to deciding for or against college). And we would expect the effect of college on earnings

(γi) in this group also to be relatively large because it has a higher potential to benefit.

Accordingly, cov(δi, γi) would be positive. Taken together, this could lead to large bias, even

if the constituent average causal effects are small. Previous approaches to sensitivity analysis

(Conley, Hansen and Rossi 2012; Van Kippersluis and Rietveld 2018) assume that all causal

effects are constants and therefore cannot address biases that arise from such scenarios.

We show in Appendix E that one can use the data to bound this covariance term. In-

tuitively, the bounds increase when the standard deviation of M and the effect of Z on

M ’s standard deviation gets larger. The second sensitivity parameter then is the standard

deviation of γi, σγi . This quantity is in the same units as E[γi], and describes how much γi

typically varies.

Finally, we can extend this sensitivity model to situations where the post-instrument

variable M may be measured with error. We discuss this in Appendix E.

3.3 Assessing values for the sensitivity parameters

To reiterate, the first sensitivity parameter E[γi] describes the direct effect of Mi on Yi, fixing

Di. We suggest that researchers reason about the sign and size of this parameter based on

the literature studying the effect of the Mi on the Yi variable, and we illustrate this below.

The second sensitivity parameter, σγi , is the standard deviation of γi. This parameter

therefore describes the heterogeneity in the effects of Mi on Yi that the first sensitivity

parameters averages.13 σγi is non-negative and increasing it does not change the mean effect

estimate, but rather widens the confidence interval.

13The sensitivity analysis developed by Imai and Yamamoto (2013) contains a similar
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This parameter is usually not identified in empirical studies. However, existing empirical

studies are informative insofar as they document effect heterogeneity. If a study reports

the effects of Mi on Yi to vary in a substantively meaningful way as a function of another

covariate, then this suggests that σγi is relatively large, although it is not possible to specify

this quantitatively. We therefore suggest to inspect the existing literature for evidence of

effect heterogeneity. To get a better quantitative sense of this sensitivity parameter, one

can depart from the range the researcher specifies for the first sensitivity parameter (which

similarly can be informed by prior literature). If one assumes that these represent the

minimum and maximum values for unit-specific causal effects and one further assumes a

certain shape for the distribution of these effects (e.g., uniform), then this yields a specific

value for σγi . We discuss this issue, including its implementation in our R package, in more

detail in Appendix E.4.

Quantitative robustness analysis does generally not yield clear qualitative answers on the

(non-)robustness of a finding, but rather invites researchers to reason about robustness as a

continuous concept. As such, researchers should not blindly insert any default values for the

sensitivity parameters, but rather choose them as to change their main inference and then

discuss, given substantive judgment and information from the prior literature as discussed

above, whether such values for the sensitivity parameters are plausible. We illustrate this

below.

3.4 Multiple post-instrument covariates

In some situations, there may be a worry that there are multiple potential post-instrument

Mi variables. We analyze this in Appendix F. It turns out that if one is willing to assume that

the different post-instrument variables do not causally influence each other, our sensitivity

analysis can be extended relatively easily. However, such a causal independence assumption

parameter.
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is very strong and untestable given the discussed assumptions. It appears unlikely that there

could be cases where one is unwilling to rule out direct effects of the candidate instrument,

yet willing to assume that these run over measured variables that happen not to influence

each other. If one does not impose such an assumption, the analysis becomes practically

intractable, as the number of sensitivity parameters grows very fast.14 However, in either

case, some of the additional sensitivity parameters describe effect heterogeneity (just as σγi)

and can only ever widen, but not tighten, confidence intervals. While suitable choices for

the other sensitivity parameters could counteract this in theory, it appears improper to put

a lot of weight on such specific choices for multiple unknown sensitivity parameters. This

implies that if one runs the sensitivity analysis with one post-instrument variable and finds

that results are not robust, it is reasonable to infer that this would not be salvaged by

extending the analyses to include multiple post-instrument variables. On the other hand, if

results appear robust, analysts should point out that this may not hold if there are other

post-instrument variables or direct effects.

4 An illustration of the proposed methodology

We illustrate our new sensitivity analysis using data from Hong, Park and Yang (2023). The

authors are interested in how a rural development program administered by the South Korean

dictator Park Chung-hee in the 1970s affected short-term and long-term election results,

including the vote share of Park’s daughter Park Geun-hye, who was democratically elected

president in 2012. The program involved village members deciding on and investing labor

and other assets in development projects. In the following, the government then paid out

subsidies depending on the performance of these projects. The treatment variable measures

logged subsidies per voter and the outcome is vote shares, both at the township level. The

authors note that there may be omitted variables that impacted citizens’ efforts and thereby

14E.g., with two post-instrument covariates, there are seven sensitivity parameters.
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subsidies as well as their political ideology. The authors therefore use an instrumental

variable approach based on the observation that villages in disadvantageous terrain had

worse baseline infrastructure upon which they could more easily improve, attracting more

subsidies. Indeed, the authors find a significant first-stage relationship between both the

elevation and the slope of a village’s terrain and the amount of subsidies. An estimate based

on 2SLS using these two variables as instruments implies that a 1% increase in the subsidies

in the 1970s led to a 6-point increase in the vote share of Park Geun-hye in 2012.

Hong, Park and Yang (2023) employ a placebo test using the 2007 vote share of a presi-

dential candidate without a family relationship to Park Chung-hee as an outcome, for which

causal effects (driven by nostalgia) should and indeed are estimated to be zero. They there-

fore argue that there are no direct effects of the instrument. We here provide an additional

robustness check using our sensitivity analysis. The IV analyses adjust for the same variables

as the OLS analyses, which may pose a problem insofar as they are influenced by the instru-

ment. Since the instrumental variables measure fundamental geographical aspects that are

essentially time-constant and may have significant societal downstream consequences, this

appears quite likely. We focus on the share of female inhabitants in a given village measured

in 1966, as sex ratios vary significantly as a function of urbanization, which is influenced by

terrain features, due to differences in disease burden and economic incentives (Courtwright

2008). Using this variable, we can also illustrate some of the potential pitfalls of informal

robustness tests discussed above.

Because this variable is measured before the onset of the treatment program, we can rule

out that it is a mediator as in Figure 2 c). If we assumed instead it was an unconfounded

post-instrument variable as in Figure 2 a), this could be checked by our diagnostic test.

We replicate the authors’ first-stage regression and find the 90% confidence interval for

the association between Mi and Di to be [−4.34,−0.14]. Since this interval includes large

associations, we cannot reject the Null of a meaningful association between Zi and Mi, and

therefore the situation in Figure 2 a) appears implausible. It also appears theoretically
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possible that there are unadjusted confounders of Mi and Yi. For example, the authors do

not adjust for any variables that describe the economic situation of a village. Accordingly,

we might face a situation such as Figure 2 b), for which both unadjusted and adjusted IV

estimators are invalid.

For illustrative purposes, we estimate a 2SLS model where we leave Mi out. We find

that estimates of the treatment effect barely change (adjusted model: b = 0.060, se = 0.026;

unadjusted model: b = 0.057, se = 0.025). When we use Mi as the outcome in the authors’

first-stage regression, we find that neither instrument is significantly associated with Mi.

Accordingly, these informal robustness tests would not indicate any problem. However,

when we use Mi as the outcome in the authors’ 2SLS specification, which estimates one of

the empirical parameters that is relevant for the sensitivity analysis, we find that instruments

and post-instrumental variable are significantly associated once one adjusts for the first-stage

relationship between instrument and treatment (b = 0.008, se = 0.004).

Consistent with this, the results from the sensitivity analysis in Figure 4 indicate that

treatment effect estimates do vary as a function of the average causal effect of Mi on Yi

(E[γi]), the first sensitivity parameter, which is depicted on the X-axis. Since Mi and Yi

are both percentages, a causal effect of 1 indicates a very strong relationship. The different

confidence intervals vary as a function of the second sensitivity parameter σγi . They are

evenly spaced between the chosen minimum (0) and maximum (0.2) of value σγi .

At E[γi] = 0 and σγi = 0, we obtain a significant point estimate close to the original one.

However, for values of E[γi] below ca. −0.75, keeping σγi at zero, point estimates become

smaller and insignificant, as the innermost confidence interval then overlaps with 0. Yet for

positive values of this sensitivity parameter, estimates become actually more positive and

significant. This is a general feature of our sensitivity analysis: Given a non-zero relationship

between Zi and Mi, point estimates will become larger in absolute terms for either all positive

or all negative values of the first sensitivity parameter.

The two sensitivity parameters interact in determining robustness. For example, at
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Figure 4: Results from the sensitivity analysis, based on data from Hong, Park and Yang
(2023). X-axis depicts the first sensitivity parameter E[γi], the average direct effect of Mi

(share of females in 1966) on Yi (2012 vote share). Y-axis depicts estimates of effect of
interest of Di (subsidies) on Yi. Thick solid line represents the mean effect estimate. Thin
solid lines represent 95% confidence interval as a function of the second sensitivity parameter
σyi , effect heterogeneity in the effect of Mi on Yi. The different values of σyi are evenly spaced
between the depicted minimum and maximum of σyi .
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E[γi] = 0, the estimate becomes insignificant for σγi larger than ca. 0.15 (the third out-

ermost confidence interval), while at E[γi] = −0.5, it becomes insignificant for σγi larger

than ca. 0.1 (the second outermost confidence interval). So what are plausible values for

the sensitivity parameters? Observational analyses of the 2012 election did not find gender

effects in the presidential vote Kang (2018). Furthermore, the sensitivity parameters de-

scribe the effect of historic, not contemporary sex ratios. Overall, such average effects may

therefore be small, and perhaps are more likely to be positive than negative, given evidence

on “gender affinity effects” Dolan (2008). Indeed, in the authors’ original 2SLS regression,

the association between Mi and Yi is positive but insignificant, although this estimate is very

noisy and may suffer from bias. Regarding the variation in causal effects across townships

(σγi), the literature on gender effects highlights that these vary significantly from context to

context (Goodyear-Grant and Croskill 2011). If we pick a bell-shaped Beta distribution with

unit-level causal effects between −0.1 or 0.4, the implied mean effect is E[γi] = 0.15 while

σγi ≈ 0.08. The resulting confidence interval is [−0.01, 0.12] and the estimate is therefore

insignificant.

5 Conclusion

Many researchers use instrumental variables in settings where they try to “control away”

a direct effect of the instrument on the outcome by adjusting for post-instrument variables

Mi. In this paper, we explained why this strategy only works under restrictive assumptions.

Using potential outcomes and causal graphs, we highlighted the asymmetric role of pre-

and post-instrument covariates: While adjustment for the former is often necessary and

unproblematic, statistical control for the latter has to be taken with extreme caution. We

showed that with direct effects of the instrument through Mi, some local average treatment

effects may be identified, but we also highlighted various sources of asymptotic bias. We

discussed the limited value of existing robustness tests and provided a more suitable test of
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a specific set of identification assumptions. Finally, we introduced a sensitivity analysis and

illustrated it using the IV analysis in Hong, Park and Yang (2023). Here, it became clear

that researchers need to reason about both mean direct effects of the instrument as well as

their variability.

We conclude by providing a checklist for applied researchers that want to use a (potential)

instrumental variable that may have a direct effect on the outcome through another variable:

1. Based on substantive knowledge, determine which of the graphs discussed in this paper

seems plausible for your research design. Specifically, be clear about which variables

are confounders Xi that influence Zi, Di, and Yi, and which variables Mi are driven by

Zi or Di.

2. If Mi is a mediator and not directly driven by Zi, proceed with standard estimation

routines like 2SLS, where you condition only on Xi.

3. If your assumptions are equivalent to graph a) in Figure 2, implement the diagnostic

test by providing evidence that Di and Mi are independent conditional on Zi.

4. If the test does not reject the Null, reconsider your assumptions. The assumptions in

Figure 3 allow for conditional dependency between Di and Mi and identification based

on adjustment for Xi and Mi.

5. If prior knowledge or the diagnostic test leads to the conclusion that Zi directly in-

fluences Mi and that the unobserved confounder also influences Mi (as in graph b) in

Figure 2), identification is not possible. Perform estimation conditional only on Xi and

then use our sensitivity analysis to assess whether substantive conclusions still hold.

Finally, we reiterate a point made, inter alia, by Conley, Hansen and Rossi (2012): A

strong but imperfect instrument may be preferable to an exogenous, but weak instrument.

The strength of an instrument is, of course, estimable. When a central post-instrument vari-

able Mi is measured, our method also allows researchers to better assess the consequences of
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imperfections of their instrument, without the need to rely completely on a priori judgments

about exogeneity.
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A Paper survey

Table A1 presents the counts of articles taken from the American Political Science Review, the American

Journal of Political Science, and the Journal of Politics that use instrumental variables in their empirical

analyses for the period from 2010 to the present. For each of the papers, we have coded whether there is

an explicit discussion regarding the exclusion restriction and among those where there is, whether there

is a covariate being included as a control to satisfy such restriction. The table shows that 75.12% of the

papers discuss the exclusion restriction and 19.02% include a covariate to address potential violations

to this assumption. When dividing the sample into two periods, one starting in 2010 up to 2014 and a

second one for papers published in 2015 and after, we see that the percentage of papers that apply the

fix has increased, from 14.1% to 22.05%.

Table A1: Exclusion Restriction and Added Covariates (Counts)

Exclusion restriction Added covariate Total articles

2010-2014 58 11 78
[74.36] [14.10] [100]

2015-2020 96 28 127
[75.59] [22.05] [100]

2010-2020 154 39 205
[75.12] [19.02] [100]

Exclusion restriction denotes the number of articles that explicitly discuss exclusion restric-
tions as identification assumptions in the instrumental variable analysis. Added covariate
denotes articles that include a control variable to address a violation of the exclusion re-
striction. Total articles is the number of articles using instrumental variable techniques.
Percentages are taken over total articles in the period and are in brackets.

B Causal graphs and IV identification using potential out-

comes

Causal graphs, specifically directed acyclic graphs, consist of nodes, which visualize variables, and edges,

which are usually directed arrows from one node to another. A path is any consecutive sequence of
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edges. In line with Pearl (2009), we view causal graphs as representations of a nonparametric system

of structural equations that describes cause-effect relationships. That is, nodes represent observable

or unobservable features of units of interest, and an edge or arrow from one such node to the other

communicates the assumption that the one variable causally affects the other variable in the population

of interest. To be precise, a causal model G consists of exogenous background variables Ui, usually

assumed to be unobserved, observed endogenous15 variables Vi, and structural (causal) functions fv for

each endogenous variable. These functions are deterministic in the sense that if we knew all relevant

inputs of fv for an endogenous variable, we could precisely determine the value of this variable. Since Ui

is assumed to be unknown, the observable variables Vi become random variables. Whenever we want to

indicate that observable variables are driven by an unobserved confounder, we will use dashed nodes for

edges emanating from this confounder. This is equivalent to assuming that the “structural errors” Ui

(i.e., all unobserved causes) of the confounded variables are dependent. Throughout, we discuss acyclic

graphs, that is, graphs in which no variable may have an effect on itself. Finally, we use upper-case

letters to denote random variables, and lower-case letters to denote realized or fixed values of these

variables.

B.1 Deriving independencies from causal graphs

To understand in which situations an instrument is (conditionally) valid, it is necessary to derive

independence relationships from the causal graph the researcher assumes. Throughout, we do so by

using an easy yet powerful tool called d-separation (Geiger, Verma and Pearl 1990). In a given graph,

a path p is said to be d-separated (or blocked) by a set of nodes Zi if and only if

1. p contains a chain Xi →Mi → Yi or a fork Xi ←Mi → Yi such that the middle node Mi is in Zi,

or

2. p contains an inverted fork (or collider) Xi →Mi ← Yi such that the middle node Mi is not in Zi

and such that no descendant of Mi is in Zi.

15Here, the word “endogenous” simply means “explained in the model”.
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A set of variables Zi is then said to d-separate Xi from Yi if and only if Zi blocks every path from a

node in Xi to a node in Yi. Importantly, d-separation implies conditional independence, which we write

as Xi⊥⊥Yi|Zi. This means that once we know the value of Zi, Xi does not predict Yi and vice versa. In

addition, we employ graphoid axioms (Dawid 1979) to prove our results.

The fact that conditioning on a collider of two variables (or its descendant) makes these variables

dependent is central to understanding the failure of certain IV strategies, but may be counterintuitive,

so that an example is helpful. Consider two independent binary variables A and B and a random

variable C that is the sum of A and B. Accordingly, C can take on the values {0, 1, 2}, and is a collider

variable, with A and B pointing into it. A and B may be random coin flips, so clearly knowing the value

of A does not help in predicting B. However, conditioning on the collider C means that we are told its

value, for example 1. The question then is whether A and B have become dependent, that is, whether

knowing C and A now tells us anything about B. The answer is a clear yes: Knowing the result C is 1

and, for example, that A is 0, we know for sure that B must be 1. Put differently, knowing the result

of a process (C) and the value of one of its independent inputs (A) also lets us predict the value of the

other input (B). The same mechanics apply if we happen to know the realization of a descendant of C.

For example, let D be a variable that takes on the value 1 when C equals 1, and is 0 otherwise (so that

it is a binary proxy for C). Knowing that D equals 1 and that A equals 0 also leads to the prediction

that B equals 1.

B.2 From graphs to potential outcomes

We now introduce potential outcomes and the causal effects of interests. As usual, the identification

assumptions need to be stated in independence relationships of observed and counterfactual variables.

Following Pearl (2009), we connect causal graphs and potential outcomes by defining the latter as

solutions to the structural model that researchers assume. The potential outcome of variables Yi ∈ Vi

when variables Xi ∈ Vi are set to x is denoted Yi(X = x) and is given by Yi(Gx). Gx stands for a

manipulated version of the original causal model G in which all functions fXi
are deleted and replaced

by constants x (Pearl 2009, 204).
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To give a simple example, consider the graph Di → Yi ← Ui. In this graph, the potential outcome

of Yi in unit i when Di is set to d is

Yi(D = d) = fy(d, Ui)

which, since d is fixed, is a random variable only because it is a function Ui, which stands for all

unobserved causes of Yi. It follows immediately that Di⊥⊥Yi(Di = d) (“ignorability”) holds, because Di

and Ui are d-separated unconditionally (since Yi is a collider that blocks the only path between Di and

Ui). In DAGs, ignorability of the treatment can also be evaluated by simple graphical criteria like the

adjustment criterion (Shpitser, VanderWeele and Robins 2010). However, we resort to this structural

definition of counterfactuals to make explicit the exact reasons for why IV identification may fail, and

because such general graphical criteria for IV problems do not exist.

Our approach is fully compatible with previous results that used counterfactuals to communicate

causal assumptions. Approaches that define potential outcomes as byproducts of structural equation

are also becoming standard in econometrics, see for example Imbens and Newey (2009), Chernozhukov

et al. (2013), and White and Lu (2011). It should also become clear that potential outcomes are indeed a

generalization and refinement of the “structural error” that plays a central role in econometrics. Again,

this error term in a structural or causal equation stands for all unobserved factors that influence the

outcome when observed determinants are held fixed, and it should not be confused with the regression

error. The latter stands for unit’s deviations in Yi from its conditional mean.16

C Proof of the proposition

We first introduce some useful properties of conditional independence:

Lemma 1. (Dawid 1979) If Xi⊥⊥Yi|Zi and Ui is a function of Xi, then 1) Ui⊥⊥Yi|Zi and 2) Xi⊥⊥Yi|Zi, Ui.

Lemma 2. (Contraction, Pearl (2009)) Xi⊥⊥Yi|Zi and Xi⊥⊥Wi|Zi, Yi imply Xi⊥⊥Yi,Wi|Zi.

Lemma 3. Zi⊥⊥Ui|Xi implies Zi⊥⊥f(Ui), g(Ui)|Xi, where f, g are arbitrary functions.

16See Imbens (2014) for a discussion of this issue in an IV context.
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Proof. Zi⊥⊥Ui|Xi implies Zi⊥⊥f(Ui)|Xi as well as Zi⊥⊥Ui|Xi, f(Ui) by lemma 1. The latter then similarly

implies Zi⊥⊥g(Ui)|Xi, f(Ui). By contraction, we then have Zi⊥⊥f(Ui), g(Ui)|Xi.

We can now prove the statements in the main text. Throughout, we will assume there are additional

observed confounders Xi influencing all observed variables.

Proof of the proposition. In graph a) of Figure 2, we have Yi(Di = d) = fy(d,Mi, Xi, Ui) and Di(Zi =

z) = fd(z,Xi, Ui). By d-separation, the graph implies Zi⊥⊥Ui|Xi,Mi. By Lemma 3, this implies

Yi(Di = d), Di(Zi = z)⊥⊥Zi|Xi,Mi. Identification of the Xi,Mi-specific LATE then follows as in

Angrist, Imbens and Rubin (1996).

In graph b) of Figure 2, Yi(Di = d) = fy(d,Mi, Xi, Ui) = fy(d, fm(Zi, Xi, Ui), Xi, Ui), which depends

on Zi. Conditioning on Xi does not block this dependency. Conditioning on Xi,Mi makes Zi and Ui

dependent, so the CIA is generally violated. However, Di(Zi = z) = fd(z,Xi, Ui), and Di⊥⊥Ui|Xi by

d-separation, so Zi⊥⊥Di(Zi = z)|Xi holds and the ATE of Zi on Di is identified.

In graph c) of Figure 2, Yi(Di = d) = fy(d,Xi, Ui) and Di(Zi = z) = fd(z,Xi, Ui). d-separation

implies Zi⊥⊥Ui|Xi, so by lemma 3, Yi(Di = d), Di(Zi = z)⊥⊥Zi|Xi. However, conditioning on Mi makes

Zi and Ui dependent, because we are conditioning on a descendant of a collider.

In Figure 3, we have

Yi(Di = d), Di(Zi = z,Mi = m)⊥⊥Zi|Xi,Mi

(CIA.2)

First, in this graph, Yi(Di = d) = fy(d,Mi, Xi, Ui) and Di(Zi = z,Mi = m) = fd(z,m,Xi, Ui). By

d-separation, we have Zi⊥⊥Ui|Xi,Mi. Lemma 3 then implies CIA.2. Additionally, we assume

P (Di(Zi = 1,Mi = m) ≥ Di(Zi = 0,Mi = m)) = 1 for all m (partial monotonicity)

E[Di|Zi = 1,Mi = m,Xi]− E[Di|Zi = 0,Mi = m,Xi] 6= 0 for all m (relevance)
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Consider the Xi,Mi-adjusted Wald estimator

E[Yi|Zi = 1,Mi = m,Xi]− E[Yi|Zi = 0,Mi = m,Xi]

E[Di|Zi = 1,Mi = m,Xi]− E[Di|Z = 0,Mi = m,Xi]

Under the above assumptions, the numerator evaluates to

E[Yi|Zi = 1,Mi = m,Xi]− E[Yi|Zi = 0,Mi = m,Xi] =

E[(Yi(D = 1)− Yi(D = 0))(Di(Zi = 1,Mi = m)−Di(Zi = 0,Mi = m))|Mi = m,Xi] =

E[Yi(D = 1)− Yi(D = 0)|Di(Zi = 1,Mi = m,Xi) > Di(Zi = 0,Mi = m,Xi)]×

P (Di(Zi = 1,Mi = m) > Di(Zi = 0,Mi = m)|Xi).

The first step follows from

E[Yi|Zi = z,Mi = m,Xi] =

E[Yi(Di = 0) + (Yi(D = 1)− Yi(D = 0))Di(Zi = z,Mi = m)|Zi = z,Mi = m,Xi],

for z = 0, 1 and CIA.2. The second uses the fact that Di(Zi = 1,Mi = m)−Di(Zi = 0,Mi = m) is

either one or zero by partial monotonicity.

The denominator is

E[Di(Zi = 1,Mi = m)|Mi = m,Xi]− E[Di(Zi = 0,Mi = m)|Mi = m,Xi] =

P (Di(Zi = 1,Mi = m) > Di(Zi = 0,Mi = m)|Mi = m,Xi)

The first step follows from consistency and CIA.2, and the second step follows from partial monotonicity.

Accordingly, the Wald estimator evaluates to

E[Yi(D = 1)− Yi(D = 0)|Di(Zi = 1,Mi = m) > Di(Zi = 0,Mi = m)|Xi].
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D Analysis of post-instrument bias using potential outcomes

We here analyze the biases of the unadjusted and adjusted IV estimator in more detail from a potential

outcomes perspective. We show that both estimators may be biased and that the bias of the adjusted

estimator may be much larger than the bias of the unadjusted estimator, even if the instrument is only

weakly associated with the post-instrument variable. We concentrate on expressions for the reduced form

for binary Zi, Di,Mi. Let Yzdm = E[Yi|Zi = z,Di = d,Mi = M ],Mzd = E[Mi|Zi = z,Di = d], Dzm =

E[Di|Zi = z,Mi = m], Dz = E[Di|Zi = z]. We also assume consistency: Di = d =⇒ Yi = Yi(Di = d).

Accordingly, E[Yi|Zi = z,Di = d,Mi = M ] = E[Yi(Di = d)|Zi = z,Di = d,Mi = M ]. We have

E[Yi|Zi = 1]−E[Yi|Zi = 0] = Y111M11D1+Y101M10(1−D1)+Y100(1−M10)(1−D1)+Y110(1−M11)D1−

(Y011M01D0 + Y001M00(1−D0) + Y000(1−M00)(1−D0) + Y010(1−M01)D0) (7)

and

E[Yi|Zi = 1,Mi = 1]−E[Yi|Zi = 0,Mi = 1] = Y111D11 +Y101(1−D11)− (Y011D01 +Y001(1−D01)). (8)

Note that all of the average outcomes of Yi that occur in the adjusted estimator occur also in the

expression for the unadjusted estimator. The “free” average outcomes that feature only in the unad-

justed estimator are Y100, Y110, Y000, Y010. Accordingly, in general, the biases of the two estimators will

be unequal. Further simplifications of these expressions do not appear possible: Zi, Di,Mi are generally

dependent, such that Mzd does not simplify. Additionally, if one considered the Wald estimator, no

further terms would drop out, as, e.g., E[Di|Zi = 1]−E[Di|Zi = 0] = D11M1 +D10(1−M1)− (D01M0 +

D00(1−M0)).
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Zi Di Mi E[Yi(Di = 1)|Zi, Di,Mi] E[Yi(Di = 0)|Zi, Di,Mi]
0 0 0 Y000
1 0 0 Y100
0 1 0 Y010
0 0 1 Y001
1 1 0 Y110
0 1 1 Y011
1 0 1 Y101
1 1 1 Y111

Table A2: Observed potential outcomes for Yi that feature in both the unadjusted and
adjusted IV estimator. Empty cells are unobserved potential outcomes.

Table A2 enumerates average potential outcomes for all eight subgroups defined by Zi, Di,Mi. It

becomes clear that the estimators are only ever functions of one, but not both, potential outcomes in

a subgroup. Accordingly, one could choose the values of the two different potential outcomes in each

subgroup to be the same, such that all average causal effects are zero. Nevertheless, both estimators will

generally be non-zero insofar as there are differences in average potential outcomes across the subgroups.

This shows that both estimators are potentially biased.

The bias of the adjusted estimator can be much larger than the bias of the unadjusted estimator, even

if the instrument is only weakly associated with the post-instrument variable. For example, consider

values D1 = D11 = 0.8, D0 = D01 = 0.6, M11 = M10 = 0.4, and M01 = M00 = 0.35. If Zi is randomized

and Zi⊥⊥Mi(z)|Di also holds, as in Figure 2 a), then these observational parameters inform about the

causal effect of Zi on Di and Mi and imply that the first-stage with respect to Di is 0.2 while it is 0.05

with respect to Mi. Accordingly, the IV would appear reasonably strong and only weakly associated

with the post-instrument variable Mi. However, if we then pick Y111 = Y010 = 0.8 while all other

average outcomes are zero, assuming a zero average causal effect, the unadjusted estimator has bias

−0.056, while the adjusted estimator has bias 0.64, more than ten times as large. This is because of a

weak unconditional association of the instrument with potential outcomes, leading to little bias in the

unadjusted estimator, but a strong association of Mi with unobserved confounders, leading to a strong

association of Zi with potential outcomes conditional on Mi. Note that these are biases that emerge

from the reduced form. They would further increase in absolute magnitude using a Wald estimator that
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divided by the strength of the instrument with respect to Di. However, their ratio would not change,

as the instrument in this case is constructed to have the same strength regardless of adjustment.

The biases vanish if Zi⊥⊥Yi(Di = d) or Zi⊥⊥Yi(Di = d)|Mi (and suitable monotonicity assumptions)

hold. These conditions cannot directly be inferred from Table A2, as the subgroups condition on Di.

For the construction of scenarios where such independencies hold, one would also need to choose suitable

values for Dzm and Mz.

E Derivation of the sensitivity analysis

The structural models in equations 2–5 suggest estimation of all regression functions using linear models

where the control variables Xi enter separately. Therefore, we leave the conditioning on Xi implicit

in the following; all variables can be thought of as having partialled out their correlation with Xi.

Consistent with this, we also assume that our sensitivity parameters are independent from Xi (see

Knox, Lowe and Mummolo (2020, p. 11) for a similar approach).

Sensitivity model 1, in contrast to model 2, implies no assumptions on the functional form of

E[Di|Zi, Xi] and E[Mi|Zi, Xi]. Then, two-stage least squares regression nonetheless is robust (at least

if the true values of the sensitivity parameter were known) (Vansteelandt and Didelez 2018, Proposition

3).

E.1 Model 1: Binary Zi,Mi, Di

In addition to the model in equation 2, we here assume

Zi⊥⊥Yi(d,m), Di(z),Mi(z) for all z, d,m (9)

P (Di(Zi = 1) ≥ Di(Zi = 0)) = 1 (10)

P (Mi(Zi = 1) ≥Mi(Zi = 0)) = 1 (11)

Under these assumptions, we have
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E[Yi|Zi = 1]− E[Yi|Zi = 0] =

E[βi(Di(Zi = 1)−Di(Zi = 0))] + E[γi(Mi(Zi = 1)−Mi(Zi = 0))] =

E[βi|Di(Zi = 1) > Di(Zi = 0)]P (Di(Zi = 1) > Di(Zi = 0))+

E[γi|Mi(Zi = 1) > Mi(Zi = 0)]P (Mi(Zi = 1) > Mi(Zi = 0)). (12)

The first equality follows from model equation 2 and assumption 9. The second equality follows

from the monotonicity assumptions 10 and 11.

By the exogeneity assumption 9, P (Di(Zi = 1) > Di(Zi = 0)) and P (Mi(Zi = 1) > Mi(Zi = 0)) are

identified as E[Di|Zi = 1]− E[Di|Zi = 0] and E[Mi|Zi = 1]− E[Mi|Zi = 0]. Combining this, we have

that

E[βi|Di(Zi = 1) > Di(Zi = 0)] =

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Z = 0]
− E[γi|Mi(Zi = 1) > Mi(Zi = 0)](E[Mi|Zi = 1]− E[Mi|Zi = 0])

E[Di|Zi = 1]− E[Di|Zi = 0]
.

(13)

Here, E[βi|Di(Zi = 1) > Di(Zi = 0)] is the LATE of interest, E[Yi|Zi=1]−E[Yi|Zi=0]
E[Di|Zi=1]−E[Di|Z=0]

is a standard Wald

(two-stage least squares) estimator with outcome Yi, treatment Di, and instrument Zi, E[γi|Mi(Zi =

1) > Mi(Zi = 0)] is the sensitivity parameter, and

E[Mi|Zi = 1]− E[Mi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]

can be estimated by a two-stage least squares regression with outcome Mi, treatment Di, and

instrument Zi.

E.2 Model 2: Binary Zi, continuous Mi, Di

Here, our assumptions in addition to the model in equations 2, 4, and 5 are
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Zi⊥⊥(βi, γi, αi, πi, δi, ε1i, ε2i, ε3i) (14)

P (αi + δiπi ≥ 0) = 1 (15)

P (δi ≥ 0) = 1 (16)

cov(Mi(0),Mi(1)) ≥ 0. (17)

Under these assumptions, we have

E[Yi|Zi = 1]− E[Yi|Zi = 0] =

E[βi(αi + δiπi)] + E[δiγi].

(18)

This holds because Zi is independent from all causal effects and the error terms.

E[δiγi]

is the bias term we need to bound.

Note that with Model 1 (with binary Di,Mi), we would have E[δiγi] = E[γi|δi = 1]P (δi = 1) =

E[γi|δi = 1](E[Mi|Zi = 1]− E[Mi|Zi = 1]). This explains why we have only one sensitivity parameter

in Model 1, whereas the next section shows that we have two unknown parameters in Model 2.

Using similar reasoning as before, we also have

E[Di|Zi = 1]− E[Di|Zi = 0] = E[αi + δiπi] (19)

and

E[Mi|Zi = 1]− E[Mi|Zi = 0] = E[δi]. (20)
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E.2.1 With measured Mi

Rewrite the bias term as

E[δiγi] = cov(δi, γi) + E[δi]E[γi]. (21)

In the second term, E[δi] is point-identified as E[Mi|Zi = 1] − E[Mi|Zi = 0], while E[γi] will be a

sensitivity parameter.

Further rewrite

cov(δi, γi) = cor(δi, γi)σδiσγi . (22)

In this latter term, we can decompose σδi as

√
var(Mi(1)) + var(Mi(0))− 2cov(Mi(1),Mi(0)). (23)

The variance terms are nonparametrically point-identified as var(Mi|Zi = z). Regarding the covari-

ance, intuition might suggest that monotonicity (Mi(1) ≥Mi(0)) implies that it is positive, but one can

create joint distributions of (Mi(1),Mi(0)) where this is not the case. However, the Frechét-Hoeffding

bounds (e.g. Aronow, Green and Lee (2014)) for this quantity using the marginals are not sharp, be-

cause the monotonicity does in fact improve the lower bound. (Nutz and Wang 2022) characterize this

lower bound under monotonicity. Since we are not aware of research on how to estimate this bound, es-

pecially with covariates, we make the simplifying assumption that cov(Mi(1),Mi(0)) ≥ 0. We evaluate

this assumption in section E.5. Using this assumption, an upper bound for equation 23 is

√
var(Mi|Zi = 1) + var(Mi|Zi = 0). (24)

Further using −1 ≤ cor(δi, γi) ≤ 1, we can bound equation 22 as
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−
√

(var(Mi|Zi = 1) + var(Mi|Zi = 0))σγi

≤ cov(δi, γi) ≤√
(var(Mi|Zi = 1) + var(Mi|Zi = 0))σγi ,

(25)

where σγi , the standard deviation of the direct causal effect of Mi on Yi, is the second sensitivity

parameter.

Collecting terms and rearranging, we have

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
− 1

E[Di|Zi = 1]− E[Di|Zi = 0]
×

{(E[Mi|Zi = 1]− E[Mi|Zi = 0])E[γi] +
√
var(Mi|Z = 1) + var(Mi|Z = 0)σγi}

≤ E

[
αi + δiπi

E[αi + δiπi]
βi

]
≤

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
− 1

E[Di|Zi = 1]− E[Di|Zi = 0]
×

{(E[Mi|Zi = 1]− E[Mi|Zi = 0])E[γi]−
√
var(Mi|Z = 1) + var(Mi|Z = 0)σγi},

(26)

if
E[Mi|Zi = 1]− E[Mi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
is positive. If it is negative, the inequality signs reverse.

E.2.2 With mismeasured Mi

Often researchers are made aware of potential violations of the exclusion restriction after initial data

collection. Although they then might gather some measure of a candidate Mi variable, it may well be

affected by measurement error. It turns out that such an error-ridden measure is still informative and

can be used for sensitivity analysis.

We formalize this by complementing the model in equations 2 - 5 with a model for M?
i , the observed

measure of the now unobserved Mi:
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M?
i = Mi + ηi (27)

and by assuming Zi,Mi⊥⊥ηi and E[ηi] = 0. This is “classical” measurement error. We show here

that the resulting estimator for the bounds stays the same, although measurement error does indeed

widen the bounds compared to a situation without measurement error.

As before, we want to gain information on the bias term (equation 21) from the data. E[δi] remains

identified under the measurement model in equation 27 and the stated assumptions on the measurement

error: E[M?
i |Z = 1]−E[M?

i |Z = 0] = E[Mi+ηi|Z = 1]−E[Mi+ηi|Z = 0] = E[Mi|Z = 1]−E[Mi|Z =

0] = E[δi].

It further turns out that the variances var(Mi(z)) are not point-identified anymore, although they

can be bounded from above by the same quantities as in the case without measurement error. Accord-

ingly, the resulting bounds for the sensitivity analysis do not change. To see why, consider

var(Mi(z)) = var(Mi|Zi = z) = var(M?
i − ηi|Z = z) =

var(M?
i |Z = z) + var(ηi|Z = z)− 2cov(M?

i , ηi|Z = z) =

var(M?
i |Z = z) + var(ηi)− 2cov(M?

i , ηi|Z = z).

(28)

Regarding this last term, we have

cov(M?
i , ηi|Z = z) = cov(Mi + ηi, ηi|Z = z) =

cov(Mi, ηi|Z = z) + var(ηi|Z = z) = var(ηi).

(29)

Accordingly,

var(Mi(z)) = var(M?
i |Z = z)− var(ηi) ≤ var(M?

i |Z = z). (30)

This bound could be improved upon if we could improve the trivial zero lower bound for var(ηi).
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However, it is only possible to bound var(ηi) from above using var(Mi).

In sum, equation 30 shows that the observed conditional variance of the measurement is equal to or

larger than the marginal variance of the potential outcome of the actual Mi variable. If measurement

error is large, the empirical estimate will be far away from zero, even though the true marginal variance

might be close or equal to zero. This is the information loss incurred by the measurement error.

Accordingly, the bounds in equation 26 remain valid, substituting M?
i for Mi.

E.3 Multiple instruments

We extend our model to multiple, possibly continuous instrumental variables. We here analyze the case

with two IVs. A generalization to more IVs is straightforward, but notationally cumbersome. There

remain two sensitivity parameters as before.

The models for Di and Mi (suppressing Xi) become

Di = µD + α1iZ1i + α2iZ2i + πiMi + ε2i (31)

Mi = µM + α1iZ1i + α2iZ2i + ε3i. (32)

We consider a two-stages least squares estimator
cov(D̂i, Y )

var(D̂i)
based on predicting Di using the two

instruments: D̂i = a+ a1Z1i + a2Z2i = E[D|Z1i, Z2i], where aj = E[αji + δjiπ]. We then have

cov(D̂i, Yi) = cov(a+ a1Z1i + a2Z2i, µy + βiDi + γiMi + ε1i). (33)

We obtain cov(Z1i, βiDi) = var(Z1i)E[a1β] + cov(Z1i, Z2i)E[a2β], and analogous expressions for the

other terms. Collecting terms and dividing by var(D̂i), the 2SLS estimator evaluates to

s1E[a1βi] + s2E[a2βi] + s1E[δ1iγi] + s2[δ2iγi], (34)

where
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s1 =
a1var(Z1i) + a2cov(Z1i, Z2i)

a21var(Z1i) + a22var(Z2i) + 2a1a2cov(Z1i, Z2i)
, (35)

and

s2 =
a2var(Z1i) + a1cov(Z1i, Z2i)

a21var(Z1i) + a22var(Z2i) + 2a1a2cov(Z1i, Z2i)
(36)

measure the relative strength of each of the instruments. This implies weights for the causal effects

βi that are non-negative if P (αji + δjiπ > 0) = 1 for all j as well as cov(Z1i, Z2i) > 0, which is the

monotonicity assumption we impose. See Mogstad, Torgovitsky and Walters (2021, Proposition 6) for

a related result. We also assume P (δji > 0) = 1 for all j.

The bias term now is s1E[δ1iγi] + s2[δ2iγi], which can be rewritten

s1cov(δ1i, γi) + s2cov(δ2i, γi) + (s1E[δ1i] + s2E[δ2i])E[γi]. (37)

It is straightforward to show that a 2SLS estimator with outcome M1i yields an coefficient on Di

that corresponds to s1E[δ1i] + s2[δ2i]. This term is multiplied with the first sensitivity parameter, E[γi],

as before.

Rewrite cov(δ1i, γi) = cor(δ1i, γi)σδ1iσγi. Using similar arguments as before, σδ1i can be bounded

from above using var(M |Z1i = 1, Z2i = z) + var(M |Z1i = 0, Z2i = z), assuming cov(Mi(Z1i = 1, Z2i =

z),Mi(Z1i = 0, Z2i = z) ≥ 0. A similar expression obtains for σδ1i . We use a parametric model to

estimate these variance (see Section E.7). σγi remains the sole second sensitivity parameter.

The remaining unknowns in the bias term are the scaling factors sj. It is straightforward to show

that these can be estimated by the coefficient on Di from 2SLS routines with outcome Zji and treatment

Di, using both instruments.

E.4 Deriving values for the second sensitivity parameter

We assume the researcher has specified a range of values for E[γi] as [a, b]. If one then assumes that the

unit-level causal effects also are within this range, then one can derive values for σγi if we also assume

a specific shape for the distribution supported on this range.
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We suggest a four-parameter Beta distribution as the class of distributions for the unit-specific causal

effects. The distribution has parameters (α, β, a, b). The general formula for its standard deviation is

√
αβ(b− a)2

(α + β)2(α + β + 1)
. (38)

For illustrative purposes, Figure A1 shows three examples of different distributions:

1. Little variance / bell curve. α = β = 4. If unit-causal effect varied between 0 and 1, then this

distribution would imply a standard deviation of the causal effects of approx. 0.17.

2. Medium variance / uniform distribution. α = β = 1. If unit-causal effect varied between 0 and 1,

then this distribution would imply a standard deviation of the causal effects of approx. 0.29.

3. High variance. α = β = 0.5. If unit-causal effect varied between 0 and 1, then this distribution

would imply a standard deviation of the causal effects of approx. 0.35.

Our R package contains a function to compute the standard deviation given the four parameters.

Again, these three specific distributions are just examples to give researchers an idea of how large the

sensitivity parameters might be in principle. As discussed in the main text, we suggest to explicitly

investigate values of the sensitivity parameter for which main inferences do not hold. Given information

from secondary literature on the effect of Mi on Yi as well as these possible shapes of the distribution

of the unit-level causal effects, researchers should then assess whether such an extreme value of the

sensitivity parameter appears plausible.

E.5 Understanding cov(Mi(1),Mi(0)) > 0

We here show how to understand the assumption that cov(Mi(1),Mi(0)) ≥ 0, how to detect possible

violations to it, and how to incorporate those into the sensitivity analysis.

First, the assumption that cov(Mi(1),Mi(0)) ≥ 0 decreases the width of the bounds for the causal

effect of interest, but has no effect on the location of the bounds. To see why, consider again our

expression for cov(δi, γi), which is one part of the bias term:
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Figure A1: Three examples of possible Beta distributions of unit-level causal effects sup-
ported on [0, 1]. X-axis depicts unit-level causal effect, y-axis depicts its density.

cov(δi, γi) = cor(δi, γi)σδiσγi

The standard deviations are always non-negative. The correlation is unknown and between −1 and

1. Therefore, this covariance between the causal effects is always in the interval [−σδiσγi , σδiσγi ]. Our

analysis bounds σδi from above using the data. Given values of the sensitivity parameter σγi , this

results in bounds centered at 0 that are “added” to the mean estimate (which already may include bias

adjustments from the first sensitivity parameter).

The empirical bound for σδi is based on writing it as

√
var(Mi|Z = 1) + var(Mi|Z = 1)− 2cov(Mi(1),Mi(0)).

Clearly, when the covariance is positive, this term becomes smaller, and the width of the resulting
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bound [−σδiσγi , σδiσγi ] becomes smaller, too.

Second, to illustrate the relationship between the monotonicity assumption Mi(1) ≥ Mi(0) and

bounds on cov(Mi(1),Mi(0)), consider Figure A2. On the X- and Y-axis, we have values for potential

outcomes Mi(0) and Mi(1), respectively. Without loss of generality, we assume here that these are

between 0 and 1.

The dashed diagonal line graphs the monotonicity constraint Mi(1) ≥Mi(0). We then plot the do-

mains of two different joint distributions for Mi(1),Mi(0). In both cases, Mi(0) is uniformly distributed

on [0, 0.3], and therefore has a mean of 0.15. The domain of Mi(1) differs between the two distributions,

but it is always a finite closed interval. The dotted squares indicate the domains of all possible joint

distributions given the domains of the marginal distributions.

The solid, piecewise linear function in the bottom left corner determines Mi(1) as follows:

Mi(1) =


0.4−Mi(0) if 0 ≤Mi(0) ≤ 0.2

Mi(0) if 0.2 ≤Mi(0) ≤ 0.3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Mi(0)

M
i(

1)

Figure A2: Understanding the relationship between the monotonicity constraint and the
covariance between potential outcomes. Solid lines are the domains of two different joint
distributions of Mi(0),Mi(1) with negative covariance. Dotted lines indicate the domain of
all possible joint distributions associated with each of these two cases. The dashed diagonal
graphs the monotonicity constraint.
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In this model, the average causal effect of Zi on Mi is 1
15

. While the downward sloping part of

the function contributes to a negative covariance, it cannot cross the monotonicity constraint, and

the upwarding sloping part of the function then increases the covariance. Clearly, the monotonicity

constraint restricts the covariance from becoming very negative.

To make the covariance more negative, one could shift Mi(1) upwards so that the monotonicity

constraint is without consequence. The second line towards the top plots such a function (Mi(1) =

0.8 −Mi(0)). Since the distribution of Mi(0) does not change, the average causal effect here is much

larger (0.55)

This suggests that while the monotonicity condition does not ensure that cov(Mi(1),Mi(0)) is ac-

tually positive, it suggests that a negative covariance is associated with large positive mean effects of

Zi on Mi.
17

In sum, while the cov(Mi(1),Mi(0)) ≥ 0 assumption used to bound σδi from above may not auto-

matically hold under our monotonicity assumption, violations of it are likely to occur together with a

large mean effect of Zi on Mi. The latter is identified from the data and directly incorporated into our

sensitivity analysis. If analysts are not willing to impose cov(Mi(1),Mi(0)) ≥ 0 and they find a large

mean effect of Zi on Mi, we therefore suggest that they allow for larger values of the second sensitivity

parameter σγi than is otherwise plausible. This will increase the width of the bounds [−σδiσγi , σδiσγi ]

and can therefore to some degree address concerns stemming from the fear that the covariance between

the potential outcomes is negative.

E.6 Relationship between different monotonicity assumptions

To assess the relationship between the traditional monotonicity assumption and partial monotonicity,

consider the case of binary Zi and binary Mi, and no covariates. In this case, a saturated structural

model for Di without any functional-form assumptions can be written

17If the mean effect of Zi were negative, the monotonicity constraint would reverse and

would restrict the covariance from becoming too positive when mean effects are small.
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Di = α + β1iZi + β2iMi + β3iZiMi + εi

where α = E[Di(Zi = 0,Mi = 0)], β1i = Di(Zi = 1,Mi = 0) −Di(Zi = 0,Mi = 0), β2i = Di(Zi =

0,Mi = 1)−Di(Zi = 0,Mi = 0), and β3i = Di(Zi = 1,Mi = 1)−Di(Zi = 0,Mi = 1)− (Di(Zi = 1,Mi =

0)−Di(Zi = 0,Mi = 0)).

Monotonicity requires Di(Zi = 1) ≥ Di(Zi = 0) for all i, which restricts the total effect of Zi on

Di. This is equivalent to stating that β1i + β2iMi(Zi = 1) + β3iMi(Zi = 1) ≥ β2iMi(Zi = 0) for all i.

This restricts the joint distribution of (β1i, β2i, β3i,Mi(Zi = 0),Mi(Zi = 1)). Note that the Mi(z) will

generally be associated with the coefficients when Mi and Di are confounded, but this is ruled out by

the assumptions we present to identify the new LATE.

Partial monotonicity is equivalent to the requirement that β1i + β3im ≥ 0 for all m and i, where m

is constant. This restricts the direct effect of Zi on Di not going through Mi to be in the same direction

for all m. This restricts the distribution of (β1i, β3i). In theory, there could be fine-tuned distributions

of (β1i, β2i, β3i,Mi(Zi = 0),Mi(Zi = 1)) where monotonicity holds but partial monotonicity does not.

However, it seems natural to assume that the restrictions on β1i, β3i also hold when suitable restrictions

on (β1i, β2i, β3i,Mi(Zi = 0),Mi(Zi = 1)) are plausible.

E.7 Implementation & statistical inference in the sensitivity analysis

For implementing the sensitivity analysis, we need to make a number of choices for estimation and

inference. As stated before, and consistent with most IV applications, estimation of the mean differ-

ences in equation 26 can be pursued using two-stage least squares. For the variance terms, we pick

corresponding linear conditional variance models. We first estimate auxiliary mean regressions

E[Mi|Zi, Xi] = ζ1 + Ziζ2 + (Xi − X̄i)ζ3

where, in the case of multiple instruments stacked into Zi, ζ1isascalarandζ2, ζ3 are vectors. We generate

residuals ri = Mi − Ê[Mi|Zi, Xi]. We then estimate var(M |Z = z) via
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E[r2i |Zi, Xi] = ζ4 + Ziζ5 + (Xi − X̄i)ζ6

where ζ4 is scalar and ζ5, ζ6 are vectors. Under this model, we have

var(M |Z = z) =

∫
x

ζ4 + zζ5 + (x− X̄i)ζ6dx = ζ4 + zζ5.

In the case of one instrument, our estimate for var(M |Z = 1) + var(M |Z = 0) is 2ζ4 + ζ5.

We use the nonparametric (paired) bootstrap to estimate the sampling distribution of the resulting

estimator for the bounds. We implement the “bootstrap-c”, which involves drawing from the original

sample with resampling and storing point estimates β̂ of the bounds based on this sample. We base sta-

tistical inference on both “percentile” and the adjusted, “basic” bootstrap confidence interval (Davison

and Hinkley 1997, 193–202), using the R package boot.

F Multiple post-instrument covariates

Zi Di

Ui

Yi

M1i

M2i

Zi Di

Ui

Yi

M1i

M2i

Figure A3: Graphs with K = 2 post-instrument covariates. Left graph: Particular causal
dependence between post-instrument covariates. Right graph: Assumption of causal inde-
pendence that is used in the sensitivity analysis.

In this section, we analyze the case of K > 1 post-instrument covariates. Figure A3 shows example

DAGs where K = 2. In the left graph, one allows for “causal dependence” between M1i and Mi2,

specifically the latter influencing the former. We show that in such cases, a sensitivity analysis becomes

practically intractable. The right graph shows an example where one assumes “causal independence”
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between the the post-instrument covariates. We show that under such an assumption, our proposed

sensitivity analysis can easily be generalized.

F.1 Causal dependence of post-instrument covariates

Consider first a system of structural equations with varying coefficients which implies the left graph in

Figure A3, leaving Xi implicit:

Yi = µY + βiDi + γ1iM1i + γ2iM2i + ε1i. (39)

Di = µD + αiZi + π1iM1i + π2iM2i + ε2i (40)

M1i = µM1 + δ1iZi + θiM2i + ε3i. (41)

M2i = µM2 + δ2iZi + ε4i. (42)

This is a natural generalization of the model in the main text, with the exception that one commits

to a particular causal ordering where M2i influences M1i. θi is the individual-level causal effect that

corresponds to this influence.

Under a suitable generalization of assumptions 14–17, the bias term then becomes

E[δ1iγ1i + δ2iγ2i + δ2iθiγ1i].

Here, E[δ1iγ1i + δ2iγ2i] corresponds to the total effect of the instrument through the post-instrument

covariates if M1i and M2i were “causally independent”, that is, were not influence to each other. As

shown in the next sections, the presence of these terms leads to a generalization of sensitivity analysis

with one post-instrument covariates such that each post-instrument covariate is associated with two

sensitivity parameters as before (a mean effect on Yi as well as its standard deviation).

Beyond that, under causal dependence, E[δ2iθiγ1i] is an additional effect that corresponds to the

path Zi →M2i →M1i → Yi. Here, one can further write
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E[δ2iθiγ1i] = cov(δ2iθi, γ1i) + E[δ2iθi]E[γ1i]

= cor(δ2iθi, γ1i)σδ2θσγ1 + (cor(δ2i, θi)σδ2σθ + E[δ2i]E[θi])E[γ1i].

(43)

In this expression, there are three sensitivity parameters that are introduced by the causal de-

pendence M2i → M1i and that cannot be further bounded: E[θi], σδ2θ, and σθ (the other sensitivity

parameters appear also under causal independence). Note that this is a simple case with just two post-

instrument covariates. With additional post-instrument covariates, the number of paths connecting Zi

to Yi and associated sensitivity parameters would further increase. For example, with three causally

dependent post-instrument covariates, one may have paths such as Zi →M3i →M2i →M1i → Yi, etc.

Therefore, we suggest to focus on the case with causally independent post-instrument covariates.

F.2 Sensitivity analysis under causal independence

The right graph in Figure A3 shows a DAG with K = 2 causally independent post-instrument covariates.

The assumption of causal independence is not testable. Due to unobserved confounding, one has open

paths such as M1i ← Ui → M2i that create a dependence between M1i and M2i even in the absence of

direct causal effects.

For the case of K post-instrument covariates, we generalize the structural model straightforwardly

as:

Yi = µY + βiDi +
K∑
k=1

γkiMki + λ
′

1iXi + ε1i. (44)

Di = µD + αiZi +
K∑
k=1

πkiMki + λ
′

2iXi + ε2i (45)

Mki = µkM + δkiZi + λ
′

3iXi + ε(2+k)i, for k = 1, ..., K. (46)

Leaving the conditioning on Xi implicit as before, assumptions 14–17 become
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Zi⊥⊥(βi, γki, αi, πki, δki, εki), for k = 1, ..., K (47)

P (αi + δkiπki ≥ 0) = 1, for k = 1, ..., K (48)

P (δki ≥ 0) = 1, for k = 1, ..., K (49)

cov(Mki(0),Mki(1)) ≥ 0, for k = 1, ..., K. (50)

It is important to note that the monotonicity assumptions 48 and 49 have to hold for each post-

instrument covariate.

Using similar derivations as before, we obtain

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
− 1

E[Di|Zi = 1]− E[Di|Zi = 0]
×{

K∑
k=1

{E[Mki|Zi = 1]− E[Mki|Zi = 0])E[γki] +
√
var(Mki|Z = 1) + var(Mki|Z = 0)σγki}

}

≤ E

[
αi +

∑K
k=1 δkiπki

E[αi +
∑K

k=1 δkiπki]
βi

]
≤

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
− 1

E[Di|Zi = 1]− E[Di|Zi = 0]
×{

K∑
k=1

{E[Mki|Zi = 1]− E[Mki|Zi = 0])E[γki]−
√
var(Mki|Z = 1) + var(Mki|Z = 0)σγki}

}
(51)

In sum, each post-instrument covariate is associated with two sensitivity parameters, E[γki] and

σγki . The interpretation is as before: E[γki] is the mean direct effect of Mki on Yi, holding Di and all

other observed variables constant. σγki is the standard deviation of this effect across individuals.

It is straightforward to show that classical measurement error, as before, does not change this result.
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