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Abstract

When using instrumental variables, researchers often assume that causal effects are
only identified conditional on covariates. We show that the role of these covariates in
applied research is often unclear and that there exists confusion regarding their ability
to mitigate violations of the exclusion restriction. We explain when and how existing
adjustment strategies may lead to bias. We then discuss assumptions that are suffi-
cient to identify various treatment effects, some of which are new, when the exclusion
restriction only holds conditionally. In general, these assumptions are highly restric-
tive, albeit they sometimes are testable. We also show that other existing tests are
generally misleading. Then, we introduce an alternative sensitivity analysis that uses
information on variables influenced by the instrument to gauge the effect of potential
violations of the exclusion restriction. We illustrate it in two replications of existing
analyses and summarize our results in easy-to-understand guidelines.

Keywords: Causal inference, instrumental variables, exclusion restriction, sensitivity
analysis
Word count: 10,448

∗We would like to thank Winston Chou for valuable input and the idea for the sensitivity analysis, and
Phillip Heiler, Caleb Koch, Sebastian Koehler, Max Reinwald, Peter Selb, Anselm Hager, and Macartan
Humphreys for comments. Participants at the University of Konstanz, ETH Zurich, modSim 2017, DVPW
Methods Section 2017, and EPSA 2018 provided helpful feedback. We also want to thank Abigail Heller
and Elisha Cohen for excellent research assistance. Julian Schuessler acknowledges financial support from
the German National Academic Foundation, the Graduate School of Decision Sciences, and the Department
for Quantitative Theory and Methods.

†Corresponding author. Post-Doc, Institute for Political Science, Aarhus University. Email:
julians@ps.au.dk.

‡Associate Professor. Department of Political Science and Quantitative Theory and Methods, Emory
University. Email: adam.glynn@emory.edu

§Assistant Professor. Department of Political Science, Emory University. Email:
miguel.rueda@emory.edu.



1 Introduction

Identification of causal effects using instrumental variables is a popular approach in both

experimental and observational research, and recent decades have seen an increasingly so-

phisticated understanding of what effects such instruments may identify. Based on the

seminal work by Angrist, Imbens and Rubin (1996), social scientists are nowadays aware

of the role that assumptions such as the exclusion restriction or first-stage monotonicity

play (Betz, Cook and Hollenbach 2018; Marshall 2016; Sovey and Green 2011). However,

we contend that the choice of covariates in instrumental variable (IV) identification is not

well-understood and leads to biases in applied research. Of special interest is the widespread

adjustment for “post-instrument” variables to address a violation of the exclusion restriction,

on which existing guidelines are either silent or contradictory.

In this paper, we give straightforward advice for researchers on how to think about

covariates in the context of IV analysis and which of these need to be controlled for. To this

end, we uncover significant new identification results and subtleties, including with regards

to (partial) tests of identifying assumptions. Furthermore, we develop a semi-parametric

sensitivity analysis that aids applied researchers when there is a direct effect of an instrument

that runs over measured variables.

Our contribution is motivated by both the widespread practice and voiced concerns of

researchers that use instrumental variables. We have identified 154 papers published since

2010 in top political science journals1 that use IV and explicitly discuss the exclusion restric-

tion. Among those, 39 use post-instrument covariates to justify the exclusion restriction.

Such practice appears to have increased over time: while from 2010 to 2014 14.1% of the

papers using IV applied this adjustment, 22.05% do so from 2015 onward.2

1The American Political Science Review, the American Journal of Political Science, and

the Journal of Politics.

2The total number of papers that use instrumental variables is 205. For more details, see
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However, some researchers are aware that adjustment for variables on other paths from

instrument to outcome may not always lead to identification. For example, both Kern and

Hainmueller (2009) and Carnegie and Marinov (2017) use instrumental variables and two-

stage least-squares regression where they choose not (or not always) to control for such

variables to avoid what they call “post-treatment bias”. But there seems to be no justi-

fication for this in the literature, which uses this term for biases that are introduced in

standard adjustment identification strategies, where instruments play no role (Rosenbaum

1984; Angrist and Pischke 2009; Montgomery, Nyhan and Torres 2018). On the other hand,

Wucherpfennig, Hunziker and Cederman (2016), for example, claim that “the instrumental

variable logic is immune to any correlation (and even causation) between the instruments

and the covariates”. A leading econometrics textbook similarly advises to simply control for

covariates influenced by the instrument (Wooldridge 2010, 94, 938). Other standard text-

books like Angrist and Pischke (2009) and reader’s guides like Sovey and Green (2011) do

not discuss such issues.

To fix ideas, consider an example from Angrist (1990), whose identification strategy

has inspired several studies of political behavior (see Berinsky and Chatfield 2015 for an

overview). The author is interested in estimating the effect of serving in the Vietnam war

on earnings. The draft was largely determined by a randomized lottery, and Angrist notes

that men who have a low draft lottery number were more likely to serve in the war. He uses

functions of this number as instruments for military service.

There could be some concerns about the validity of the exclusion restriction. For example,

those who received a low lottery number could have chosen to stay in school to obtain a

deferment (Angrist 1990, 330). This creates a link between the lottery and earnings via

education. So if information on post-lottery education was available, should we control for

it?

In this paper, we answer this question and discuss various related problems. We use both

Appendix A.
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potential outcomes and directed acyclic graphs (Pearl 2009) in our formal analysis. This

allows us to give advice to applied researchers that is both easy to formulate and understand.

We first make clear the asymmetric role of pre- and post-instrumental variables. Then,

we illustrate how adjustment for variables influenced by the instrument may not always

be successful, and that adjustment for variables influenced by the treatment will lead to

biases in IV identification even when the IV is unconditionally valid. The mechanics behind

these phenomena resemble the better-known “post-treatment” bias in adjustment strategies

(Montgomery, Nyhan and Torres 2018), although additional, more subtle problems occur.

However, we also show, perhaps to the surprise of some researchers, that adjustment for

variables influenced by the instrument is sometimes necessary for successful identification.

In some cases, we show that this identifies the well-known “local” or a weighted average

treatment effect. For other cases, we propose to identify a new, different treatment effect.

In sum, “post-instrument bias” is quite different from “post-treatment bias”.

The assumptions for valid post-instrument adjustment are highly restrictive, although

we also prove that they are testable under some circumstances. In this context, we discuss

the evidential value and implicit causal assumptions of other informal tests and robustness

checks that are prevalent in the applied literature. We show that these tests are generally

misleading. For example, checking the association between the instrument and the post-

instrument variable is not sufficient, as the bias induced by the post-instrument variable

also depends on the strength of the instrument with respect to the treatment. Therefore,

we also add to the theory of robustness checks, which so far has concentrated on regression

adjustment strategies (Lu and White 2014; Chen and Pearl 2015).

What if the strong assumption necessary for identification are not plausible or rejected by

the data? We propose that researchers utilize measures of the variable on the pathway from

the instrument to the outcome for a semi-parametric sensitivity analysis. Our approach gen-

eralizes previous approaches (Conley, Hansen and Rossi 2012; Van Kippersluis and Rietveld

2018) that operate under a strong effect homogeneity assumption and cannot use sample
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information to bound biases. Moreover, our approach also works if there is measurement

error in the post-instrument variable. This will often be the case when potential violations of

the exclusion restriction are uncovered only after initial data collection and intense scrutiny

of an IV strategy. We illustrate our approach by reanalyzing the data of Spenkuch and

Tillmann (2017) on the causal effect of Catholicism on the Nazi vote share at the end of

the Weimar Republic, as well as the data of Carnegie and Marinov (2017) on the effect of

foreign aid on human rights. The applications highlight the need to relax stringent linearity

assumptions and to account for potential heterogeneity in causal effects.

A formal analysis of violations to the exclusion restriction was already provided in the

seminal paper by Angrist, Imbens and Rubin (1996), but similar to Conley, Hansen and Rossi

(2012) and Van Kippersluis and Rietveld (2018), this did not incorporate post-instrument

variables. A more closely related paper is Deuchert and Huber (2017). They point out that

investigating instruments that may affect more than one variable is also highly relevant be-

cause oftentimes the same instrument is used to study causal effects of different treatment

variables so that researchers might be tempted to adjust for these other treatments. For ex-

ample, Bazzi and Clemens (2013) discuss the “origin of a country’s legal system” instrument

that has been used for at least seven different treatments. Mellon (2020) points out that

weather-related variables like measures of rainfall are often used as instruments for various

relationships, but have been linked empirically to more than 100 other variables, each of

which constitutes a potential measured violation to the exclusion restriction. Similar to our

approach, Deuchert and Huber (2017) also use causal graphs. However, they use these for

illustrative purposes only and prove their main results under a strong linearity assumption.

In contrast, we discuss these issues in a completely nonparametric framework and integrate

causal graphs with the popular potential outcomes approach. Importantly, we discuss addi-

tional identification assumptions, prove that these are sometimes testable, introduce a new

causal estimand, and propose a new sensitivity analysis. Finally, some of the problems that

we discuss are similar to what Elwert and Winship (2014) and Elwert and Segarra (2020)
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call “endogenous selection bias”, and both Betz, Cook and Hollenbach (2018) and Imai and

Kim (2019) also use causal graphs to illustrate failures of IV identification.

2 Understanding Conditional IV Identification Using

Causal Graphs

In this section, we present a series of causal graphs that allow for the identification of

various treatment effects when the key “ignorability” assumption only holds conditionally.

We use causal graphs because they offer a straightforward formalization of the language

already used by many researchers to communicate assumptions about the causal ordering of

variables, direct and indirect effects, confounding, etc. Additionally, they can be integrated

with the popular potential outcomes approach to causality, and allow for a derivation of

assumptions on the distribution of these potential outcomes. Specifically, we interpret graphs

as nonparametric structural equation models, as in Imai and Kim (2019). We expand on such

formal aspects in Appendix B. For other recent uses of causal graphs in political science,

see Imai et al. (2011), Imai and Yamamoto (2013), and Glynn and Kashin (2017).

2.1 A First Causal Graph for our Running Example

Consider again our example from Angrist (1990)’s seminal analysis. Angrist is interested in

the causal effect of serving as a soldier in the Vietnam war (Di) on later earnings Yi. The

draft lottery leads to a binary instrument Zi that indicates draft eligibility.

The “ceiling” for the draft varied by year due to fluctuating demands by the military.

Therefore, the cohort Xi of a man influenced the probability that he would be drafted. At

the same time, birth year is clearly causally prior to the draft and might have other effects

on the outcome. This can easily be depicted in a causal graph such as figure 1.

The dashed arrows emanating from the Ui-variable indicate that it stands for unobserved

variables that may (directly) influence treatment, outcome, and covariates Xi, but not the
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instrument. In the Vietnam draft example, Ui may contain variables describing the socio-

economic status of one’s parents. These will impact the decision to enlist in the military, and

on later socio-economic outcomes. They may also affect the timing of birth. The existence

of such unobserved confounders is the central motivation for employing IV identification

because they make identification of the effect of Di on Yi via regression or matching im-

possible. With this first example in mind, we now discuss basic quantities of interests and

identification assumptions in the potential outcomes framework.

Zi Di

Ui

Yi

Xi

Figure 1: Benchmark graph. In this graph, Zi is an instrument for the effect of Di on Yi
conditional on Xi, but not unconditionally.

2.2 Basic IV Identification in the Potential Outcomes Framework

Generally, we will discuss the identification of variants of a local average treatment effect

(LATE):

E[Yi(D = 1)− Yi(Di = 0)|Di(Zi = 1) > Di(Zi = 0), Xi]

Here Yi(D = d) is the potential outcome of Y in unit i when Di is set to d, and Di(Zi = z)

is the potential outcome of D in unit i when Zi is set to z. Therefore, this expression defines

the average causal effect of a binary treatment Di on outcome Yi among those individuals 1)

for which an instrument Zi changes treatment status (compliers) and 2) which are charac-

terized by covariate profile Xi. Implicitly and throughout this paper, we assume that there

are no spillovers, i.e., the treatment or instrument of one unit does not affect other unit’s

variables.

What if treatment is continuous, as is the case in our two application studies? First write

the causal effect of instrument on treatment as Di(Z = 1) −Di(Z = 0) = αi. If the causal

(“structural”) equation of interest has heterogeneous effects, but otherwise is linear, as in
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Yi = µY + βiDi + εi,

then the parameter of interest is usually (e.g., Angrist and Pischke (2009, 186–187))

E[αiβi]

E[αi]
= E

[
αi

E[αi]
βi

]
. (1)

Here,
αi

E[αi]
can be understood as individual-level weights of the treatment effects βi.

Conventionally, three assumptions are used to identify such treatment effects. These

are often discussed for the case of binary instrument and treatment, although they easily

generalize. The first assumption, monotonicity, assumes that

P (Di(Zi = 1) ≥ Di(Zi = 0)) = 1.

That is, the instrument has a causal effect on the treatment that pushes every unit in

the same direction, and there are no “defiers”. If this holds, αi ≥ 0 so that the expression

in equation 1 is a weighted average of individual-treatment effects βi, where the weights are

all greater than or equal to zero.

Secondly, it is assumed that Zi and Di are dependent (“relevance”):

E[Di|Zi = 1, Xi]− E[Di|Zi = 0, Xi] 6= 0

which is directly testable. In this paper, we will focus on understanding the crucial condi-

tional independence assumption (CIA)

Yi(Di = d), Di(Zi = z)⊥⊥Zi|Xi

In words, this assumptions states that the potential outcome of outcome Yi when treatment

Di is set to d and the potential outcome of Di when instrument Zi is set to z are jointly
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independent from Zi, given covariates Xi.

If these assumptions - CIA, monotonicity, and relevance - hold, two-stage least squares

with saturated models in both stages estimates a weighted average of these Xi-specific

LATEs, and this or linear unsaturated models are dominant in applied research (Angrist

and Imbens 1995; Angrist and Pischke 2009, 177). Notably, the CIA subsumes both the

exclusion restriction and the more opaque “ignorability” requirement. We use graphs to

illustrate when this latter assumption hold, and will usually discuss the “causal first-stage”

assumption Di(Z = z)⊥⊥Zi|Xi separately from the Yi(Di = d)⊥⊥Zi|Xi requirement, since

this is more intuitive. Formal derivations of the joint independence and other proofs are in

Appendix C.

2.3 Identification with Pre-Instrument Covariates

We start with Figure 1 as a benchmark graph. In this graph, the treatment and outcome are

driven by unobserved confounders Ui, while there are also observed confounders Xi that may

influence the instrument, treatment, and outcome. A first important insight that this will

not be the case when Zi is physically and unconditionally randomized, because this precludes

the Xi → Zi path. However, if there are such observed confounders, adjustment for them is

necessary. Intuitively, a first-stage regression of Di on Zi only would not give the causal effect

of Zi on Di because of the open “back-door” paths Zi ← Xi → Di and Zi ← Xi ← Ui → Di.

Similarly, the instrument and the outcome would be connected through a path other than

the effect going through Di. Conditioning on Xi solves both problems, because Xi “blocks”

these spurious paths.

Here, the CIA would not hold if at least one of two key conditions are violated. First,

it may be that the confounders Ui also influence the instrument Zi. In this case, Zi and Ui

are dependent (d-connected), and conditioning on Xi does not break this dependence. This

is the problem of “back-door paths” which has found extensive treatment in the graphical

literature (Shpitser, VanderWeele and Robins 2010). In fact, it suffices to have unobserved
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confounders that influence Zi and Di or Zi and Yi, but not necessarily all three variables, to

invalidate the CIA. This fact has been overlooked even by very careful applied researchers

that made their thinking about potential confounders explicit (e.g. Stanig 2015, 188).

Second, Zi may have an effect on Yi going not through Di, which violates the “exclusion

restriction”. In this case, one can think of the potential outcomes as being determined by

the equation (see Appendix B for a detailed discussion)

Yi(Di = d) = fy(d, Zi, Xi, Ui)

which clearly depends on Zi, so that the CIA is violated.3 Note, however, that Di(Zi =

z)⊥⊥Zi|Xi may still hold if the exclusion restriction is violated, so that the effect of Zi on Di

remains identified.

In the following, we will assume that observed pre-instrument covariates Xi may exist,

and that conditioning on them solves the “back-door” problem. Specifically, this will even

hold if Ui influences Xi (so that the effects of variables in Xi are not identified). This relaxes

the common restriction for all Xi variables to be “exogenous” (e.g. Wooldridge 2010, 110),

and differentiates such control variables from the post-instrument variables we discuss next.

For ease of visual presentation, we will not depict the Xi nodes in the causal graphs that we

discuss in the remainder of this article.

3Accordingly, the exclusion restriction is part of the CIA in our formulation, a point also

made by Angrist and Pischke (2009, 132). In their guide to IV, Sovey and Green (2011,

191) state that the exclusion restriction is needed in addition to this CIA, but this is not

accurate. It becomes clear when one thinks of potential outcomes as a summary of variables

that influence Yi when Di if physically fixed.
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2.4 Identification with Post-Instrument Covariates

We now discuss a variety of situations in which researchers measure covariates Mi that are

influenced by the instrument, that influence the outcome, and that may also influence or

be influenced by the treatment.4 Our main result is that identification of a local average

treatment effect is possible in some cases under strong assumptions. It turns out that

identification relies on adjustment for the Mi covariates, even if they also influence the

treatment. For the latter case, we introduce a new causal estimand and show how it is

identified. Accordingly, “post-instrument” bias does not generally occur but depends on the

causal model. Additionally, ruling out causation between Di and Mi allows for a test of the

identification assumptions which is easy to implement. We discuss other, informal tests in

the literature and show that these are generally misleading.

In the Vietnam draft example, a potential Mi variable is college education, because the

latter may have been used to avoid the draft, and because it plausibly affects earnings. The

textbook by Wooldridge (2010, 938) discusses this complication and claims that statistical

adjustment for such a variable Mi “effectively solves this problem”. In the following, we

show that this statement needs considerable qualification.

The most simple case is shown in graph (a) in figure 2, where the variable Mi is influenced

by the instrument Zi and in turn is a cause of Yi. However, neither does Di drive Mi, nor

does Mi influence Di, nor is Ui influencing Mi. Can we then simply control for the “post-

instrument” variable Mi to make the instrumental variable approach work?

It turns that under the restrictive assumptions visualized in graph (a), this conditioning

strategy indeed identifies an (Xi,Mi)-specific LATE or weighted ATE as in equation 1, since

the CIA holds with conditioning set (Xi,Mi). To see why, consider the first-stage effect of

Zi on Di. Although Mi is “post-instrument” - i.e., influenced by Zi - conditioning on it does

4Our results only hold for acyclic graphs. This means that researchers need to rule out

mutual causality between variables a priori.
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Zi Di

Ui

Yi

Mi

(a)

Zi Di

Ui

Yi

Mi

(b)

Zi Di

Ui

Yi

Mi

(c)

Figure 2: Boxes indicate the conditioning on Mi, and bi-directed arrows indicate dependen-
cies created by such conditioning. In graph (a), conditioning on Mi is required and identifies
the Mi-specific local effect of Di on Yi. In graph (b), conditioning on the collider Mi opens
a non-causal path between Ui and Zi. In graph (c), Mi is a descendant of collider Di, and
the same dependence by Zi and Ui is created.

not invalidate the ignorability of Zi with regards to Di, i.e. Di(Zi = z)⊥⊥Zi|Xi,Mi holds.

Intuitively, there is no “back-door” path from Zi to Di not blocked by Xi, and conditioning

on Mi does not block any genuinely causal paths, nor does it open up any new spurious

paths, since it is not a “collider”. In a similar vein, the potential outcome Yi(Di = d) is now

determined by Mi, Xi, Ui as

Yi(Di = d) = fy(d,Mi, Xi, Ui),
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and is independent from Zi conditional on Mi and Xi. This is because the direct path

through Mi is blocked while no other paths are opened up.5

There are two crucial assumptions for the validity of this approach that may be violated.

First, it may be that Mi is also driven by the unobserved confounder Ui. This situation is

depicted in graph (b) of figure 2. In our running example, it is quite easy to imagine that

unobserved parental SES positively influences the choice to go to college directly. In this

case, Mi becomes a “collider”, and conditioning on it (indicated by the box around it) opens

up an unblockable path (indicated by the dashed by-directed arrow) between Zi and Ui.

Specifically, in the “reduced-form” part of the two-stage least squares regression, we

would compare draftees (Zi = 1) to non-draftees (Zi = 0), given the same college decision

Mi = m. If Zi affects the college decision, then the fact that the latter is observed to be

constant in such a group must be due to individual differences in Ui, which then affect Yi

irrespective of an actual treatment effect. E.g., draftees that did not attend college to avoid

the draft probably had lower parental SES than non-draftees, and lower wages Yi for that

reason alone - even if neither treatment nor college affected earnings.

This open “non-causal” path then actually invalidates both the first-stage Di(Zi =

z)⊥⊥Zi|Xi,Mi assumption due to post-treatment selection bias,6 as well as the Yi(Di =

d)⊥⊥Zi|Xi,Mi assumption.

Second, even if Zi does not directly drive Mi, the latter may be influenced by the treat-

ment Di, as in graph (c) of figure 2. In this case, Mi is a mediator of the Di → Yi relationship,

and is also influenced by Zi indirectly through Di. Wooldridge (2010, 95) suggests that on-

the-job training might be such a variable in the Vietnam draft application. In this case, Zi

is a valid instrument when one does not adjust for Mi. This is because the exclusion restric-

tion obviously holds, and there are also no other back-door paths which connect Zi and Yi.

5See Appendices B and C for a more detailed explanation of this formal argument.

6For an in-depth analysis of this phenomenon in standard adjustment strategies in polit-

ical science, see Montgomery, Nyhan and Torres (2018).
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However, adjusting for Mi introduces a severe, but more subtle problem. D-separation—

explained in more detail in Appendix B—does not only prohibit to condition on “colliders”

to block paths, but also to condition on descendants of such variables. Since Zi and Ui

collide in Di, conditioning on its “child” Mi has the same qualitative consequences as in

graph (b), making it impossible to identify the ATE of Zi on Di or the LATE of Di on Yi.

In the “reduced-form” regression of Yi on Zi controlling for Mi, we would again compare

individuals with different values for Zi, but the same Mi. Then, observed differences in Yi

may be due to differences in unobserved Ui that are mediated through Di, and not due to a

causal effect of Di.

This subtle problem went unnoticed by Deuchert and Huber (2017, 416), who discuss

a similar graph and state that conditioning on a mediator satisfies the CIA and identifies

a “partial direct effect”. As we hope we have made clear, this is not the case, because

conditioning on a mediator renders Zi correlated with Ui, which prohibits any identification.7

We return to these graphs again when we discuss the possibility of testing which of the

assumptions hold.

An interesting special case of graph (c) of figure 2 is when Mi stands for the inclusion

of an observation in the dataset (or, reversely, for attrition). In both observational and

experimental studies, participants often drop out based on the realization of their treatment

or their data is selectively reported due to administrative reasons (Aronow, Baron and Pinson

2019; Elwert and Winship 2014; Knox, Lowe and Mummolo 2020). Researchers are then

forced to condition on Mi. In IV settings, even if Mi is not directly driven by Ui and does

not influence Yi, it is a descendant of the collider Di, so that the instrumental variable

becomes invalid. Similarly, in Angrist (1990), it is noted that reported earnings are censored

at a maximum l, so that the whole sample is conditional on Y ≤ l. This means one

conditions on a descendant of the true unobserved earnings so that the IV becomes invalid,

7Frölich and Huber (2017) propose to identify mediation effects in such a setting using

an instrument influencing Di and a separate instrument influencing Mi.
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a fact acknowledged by Angrist (1990, 334). Berinsky and Chatfield (2015) discuss this and

related selection problems that may occur for the draft lottery instrument.8

A final possible set of causal assumptions is depicted in graph 3. In this graph, Mi is not

influenced by the confounder Ui, but affects Di. Again, the no-confounding assumption is

crucial. If it is violated, a collider phenomenon would occur as in the previous cases, making

Zi an invalid instrument. However, if such confounding can be ruled out, one can identify a

local ATE:

E[Yi(Di = 1)− Yi(Di = 0)|Di(Zi = 1,Mi = m) > Di(Zi = 0,Mi = m), Xi]

This estimand has not been discussed before. It is the average causal effect of a binary treat-

ment for the latent subpopulation of units which 1) change treatment status as a response

to the instrument Zi, while fixing Mi at m and 2) which are characterized by covariates Xi.
9

Zi Di

Ui

Yi

Mi

Figure 3: Graph where adjustment for Mi is necessary to identify a local average treatment
effect.

The intuition behind this identification result is that under the assumptions in graph 3,

one can actually identify the joint effect of Zi and Mi on Di, which is what Pearl (2001) and

Acharya, Blackwell and Sen (2016) call the “controlled direct effect”. For those individuals

that shift their treatment uptake as a result of this hypothetical joint intervention, the

8See Elwert and Segarra (2020) for an analysis of this problem under a linearity assump-

tion.

9Blackwell (2017) discusses similar quantities where Mi would be a second randomized

instrument that does not affect Yi directly.
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effect of Di on Yi is then also identified. There are additional relevance and monotonicity

assumptions needed, which are very similar to the usual LATE assumptions. We discuss

these in more detail in Appendices C and E.

We summarize all of these identification results in the following proposition:

Proposition Under the assumptions in graph (a) of figure 2, the CIA

Di(Zi = z), Yi(Di = d)⊥⊥Zi|Xi,Mi

holds and under the usual monotonicity and relevance assumption, the LATE estimand

E[Yi(Di = 1)− Yi(Di = 0)|Di(Zi = 1) > Di(Zi = 0), Xi,Mi]

is identified.

Under the assumptions depicted in graphs (b) of figure 2, the CIA does not hold with

any conditioning set.

Under the assumptions depicted in graphs (c) of figure 2, the CIA does hold conditional

on Xi, but not conditional on Mi.

Under the assumptions depicted in figure 3, the CIA

Di(Zi = z,Mi = m), Yi(Di = d)⊥⊥Zi|Xi,Mi

holds. If additionally P (Di(Zi = 1,Mi = m) ≥ Di(Zi = 0,Mi = m)|Xi) = 1 (“partial”

monotonicity) and E[Di|Zi = 1,Mi = m,Xi] − E[Di|Zi = 0,Mi = m,Xi] 6= 0 (relevance)

hold, the LATE estimand

E[Yi(Di = 1)− Yi(Di = 0)|Di(Zi = 1,Mi = m) > Di(Zi = 0,Mi = m), Xi]

is identified.
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Proof: See Appendix C.

2.5 Judging and Testing the Causal Assumptions

In sum, what are the implications of these results for applied researchers if they suspect that

Zi influences Mi? We emphasize that only the restrictive sets of assumptions in figure 2 (a)

and figure 3 allow for IV identification by conditioning on Xi and Mi. Again, if researchers

think that the instrument may influence Yi through variables Mi, they need to rule out

confounders that may affect Mi and Yi either directly or through Di. We also emphasize

that researchers must not condition on mediators of the Di → Yi relationship. This causes

inconsistencies even when instruments are unconditionally valid. We now return to some of

the empirical applications that motivated our research and focus on the validity of various

tests that were proposed to scrutinize instrumental validity in the face of variables influenced

by the instrument.

In general, robustness tests rely on determining “core” and additional control variables

such that 1) identification holds with core controls, but also with additional controls and 2)

there must be a chance that the robustness test fails if the assumptions are incorrect (Chen

and Pearl 2015; White and Lu 2011). Regarding condition 1), if one knew that one of the

sets is incorrect a priori, then there would be no point in testing, as one would have to stick

to the other, correct set of controls anyways. The problem with many applied papers using

IV and post-instrument variables is that they violate this condition. If one allows for the fact

that the IV impacts on Yi directly over Mi, then either the instrument is completely invalid

– but one can engage in a sensitivity analysis, as shown below –, or one needs to adjust for

Mi.

For example, Wucherpfennig, Hunziker and Cederman (2016) acknowledge the possibility

of various post-instrument variables, and try to mitigate such concerns by adjusting for these

as a robustness test. They report that estimates under either adjustment set are similar.

Such a strategy is also undertaken by Kern and Hainmueller (2009) and Spenkuch and
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Tillmann (2017). It turns out that this testing strategy is misleading. To see why, consider

first graph (a) in figure 2. In this situation, Mi-adjusted IV estimation identifies a LATE,

whereas unadjusted estimates will be different and will exhibit asymptotic bias. In situations

like graph (b) in figure 2, Zi is not a valid instrument under either adjustment, and there

are no sets of observed variables that are d-separated, so there is no way to empirically test

this graph. In graph (c), Mi-adjusted IV estimates will differ, just like in graph (a), but now

the unadjusted estimators converge to a LATE, whereas the adjusted estimates are biased.

Accordingly, researchers cannot circumvent to commit themselves to causal assumptions a

priori in situations like these. Comparing adjusted and unadjusted estimates is, in general,

misleading: Both equal and unequal estimates may come from a real-world process where

the variable Zi is a valid instrument unconditionally, conditional on Mi, or in neither case.

This phenomenon is directly related to approaches that directly inspect the correlation

between Zi and Mi that would lead to differences in point estimates (conditional on Xi). Re-

searchers often report that this association is not significant, that the instrument is therefore

valid, and that Mi can effectively be ignored. But when one acknowledges the possibility

of a non-zero effect of Zi on Mi, the Null hypothesis to be tested should be a composite

Null of there being an effect (Hartman and Hidalgo 2018). Additionally, the bias introduced

through post-instrument variables increases as the instrument becomes weaker (as discussed

below), which such tests do not address. Our sensitivity analysis can be seen as an alterna-

tive approach to such a testing strategy because it incorporates the statistical uncertainty

associated with the estimate of the effect of Zi on Mi. This is the price researchers have to

pay when they are not willing to definitely assume a zero effect. Finally, even small effects

of Zi on Mi may be relevant when the effect of Mi on Yi is large.

There is a much more sensible testing strategy for variables that researchers think are

influenced by the instrument. One situation in which causal assumptions we have proposed

are sharp enough that they allow a test is graph (a) of figure 2. In this graph, Di and Mi are

connected via the Di ← Z →Mi path, and additional blocked paths running over the collider
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Yi. Accordingly, Zi (and Xi, as usual) d-separate Di and Mi, and these two variables should

therefore be conditionally independent in the population. This can be tested by estimating

E[Di|Mi, Zi, Xi] as a function of Mi, which is simply the first-stage that is often reported

by researchers. However, the focus normally rests on the partial association between the

instrument Zi and Di (e.g., for testing whether the instrument is weak), while the test we

propose rests on the partial association between the post-instrument variable Mi and Di.

Specifically, graph (a) of figure 2 suggests that the coefficient of a linear regression of Di on

Mi, controlling for Zi and Xi, is zero (under a correct regression specification and appropriate

standard errors). This test may seem unintuitive at first glance because it does not directly

check for associations between the instrument and other variables. However, it is the only

test that can be justified by relatively weak assumptions. We note that tests for ignorability

of the treatment using proxies of unobserved confounders take a similar indirect route (White

and Chalak 2010; Pei, Pischke and Schwandt 2017).10

What if the test fails, i.e., the independence relationship is empirically violated? In this

case, at least one open path between Di and Mi must exist, like in graphs (b) and (c) of

figure 2, or as in figure 3. Accordingly, researchers should consider a priori which of these

paths may exist. Again, the possibility of causal cycles must be ruled out beforehand to

ensure that any of the conclusions we presented are valid.

10Graph (c) of 2 also has a testable implication: Zi⊥⊥Mi|Di, Xi. This again is a highly

non-standard test (as explained, conditioning on Di leads to misleading inferences in all

other situations). We discussed this graph to illustrate the mechanics of conditioning on a

descendant of a collider. In most situations, Mi will also be driven by Ui, and then the graph

does not have a testable implication.
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3 A New Sensitivity Analysis

We have shown that instruments for a causal effect may not be valid when they affect

other variables that affect the outcome of interest and are also driven by unobserved con-

founders. Specifically, conditioning on these other variables Mi oftentimes will not achieve

identification. In this section, we propose a new semi-parametric sensitivity analysis for

such situations. Our approach is based on the fact that we can often assess the effect of

the instrument on the Mi variable, which provides useful information to bound the bias

introduced by the direct effect of the instrument. This goes beyond other recent approaches

(Conley, Hansen and Rossi 2012; Van Kippersluis and Rietveld 2018) that rely completely

on researchers’ judgments on the sign and magnitude of the direct effect of the instrument.

In contrast, our approach can use sample information. Furthermore, we relax parametric

assumptions (e.g., constant effects) that are often made in the literature, and that are often

implausible on substantive grounds. We present two different models with different assump-

tions that nonetheless lead to similar estimation approaches: First, a model for situations

where instrument, treatment, and post-instrument variable are binary. Second, a model for

a binary instrument, but possibly continuous treatment and post-instrument variable.

3.1 Model 1: Binary Variables

When Zi, Di, and Mi are all binary, one can perform sensitivity analysis under relatively

weak parametric restrictions. At the same time, the resulting estimation approach is a special

case of our second approach that we discuss in the next section.

Here, our model for Yi looks as follows:

Yi = µY + βiDi + γiMi + λ
′

1iXi + ε1i. (2)

In this model, all causal effects vary across individuals in a fairly unrestricted fashion,

and so are random variables (see Imai and Yamamoto (2013) for a similar setup). Xi is a
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vector of controls. We assume E[ε1i] = 0 without loss of generality. In Appendix D, we

show that when Di and Mi are binary and further exogeneity and monotonicity assumptions

discussed below hold, the standard LATE conditional on Xi can be expressed as

E[Yi|Zi = 1, Xi]− E[Yi|Zi = 0, Xi]

E[Di|Zi = 1, Xi]− E[Di|Z = 0, Xi]
−

E[γi|Mi(Zi = 1) > Mi(Zi = 0)]× E[Mi|Zi = 1, Xi]− E[Mi|Z = 0, Xi]

E[Di|Zi = 1, Xi]− E[Di|Z = 0, Xi]
.

(3)

In this expression, the first term can be estimated by a standard two-stage least squares

regression that completely ignores Mi, with outcome Yi, treatment Di, instrument Zi, and

controls Xi. The second term is the asymptotic bias introduced by direct effects of the

instrument through Mi. It consists of the average causal effect of Mi on Yi (γi) for units for

which Zi has an effect on Mi. This is the unknown sensitivity parameter. It is multiplied by a

term that can be estimated via another standard two-stage least squares regression, but now

with outcome Mi. Here, the numerator equals the average effect of Zi on Mi, which (under

monotonicity) is equal to the share of units for which Zi has an effect on Mi. The larger

this effect, the larger the bias. The denominator is the first-stage of the main regression

and equals the share of units for which the instrument has an effect on the treatment. The

smaller this quantity, the weaker the instrument is for Di, and the larger the bias through

direct effects is.

An important insight from this bias decomposition is that the association between Zi and

Mi may be small, but the bias nonetheless large if the instrument is (also) weakly associated

with Di. This is on top of other problems associated with weak instruments which occur in

finite samples (Bound, Jaeger and Baker 1995).

While the causal model for Yi in equation 2 restricts interactions between the observed

variables, we make no assumption on the causal models for Di and Mi, except that the effect
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of Zi is “monotone” in both.11 Therefore, this approach is quite general, although with

continuous X modeling will be necessary.

3.2 Model 2: Binary IV, Continuous Treatment and Post-Instrument

Variable

Many applications (including our two empirical analyses further below) deal with continuous

Di or Mi, in which our bias decomposition is not valid. Here, one must instead make further

assumptions on the causal models for Di and Mi. Consistent with our model for Yi, we

assume that

Di = µD + αiZi + πiMi + λ
′

2iXi + ε2i (4)

Mi = µM + δiZi + λ
′

3iXi + ε3i. (5)

Importantly, the causal model defined by all three equations is consistent with graphs

(a) and (b) graphs in figure 2 and additionally allows for Mi to affect Di.
12

Beyond the causal models, we make a series of further assumptions which are enumerated

11One could in fact allow for interactions between Di and Mi in the model in equation

2. The interaction term would be a second sensitivity parameter that is multiplied with the

estimable share of “joint compliers”, P (Di(Zi = 1)Mi(Zi = 1) > Di(Zi = 0)Mi(Zi = 0)).

See Blackwell (2017) for related estimation strategies when there are two IVs. Since applied

researchers using IV regressions rarely specify interactions between treatment and covariates

and allowing for them in our second sensitivity model increases complexity even more, we

do not pursue this here.

12In graph (c), a sensitivity analysis would only be necessary if Zi affected Mi directly.

However, βi would then no longer describe the total effect of Di, which is of primary interest

in most analyses.
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in Appendix D. We here give an intuitive summary. The first assumption follows from graphs

(a) and (b) in figure 2. It requires that there are no unblocked back-door paths from Zi to

any of Di,Mi, Yi, and that there is no direct effect of Zi on Yi save for the effects through

Di and Mi. The second assumption states that Zi affects Di monotonically, which again is

a standard assumption. The third assumption requires Zi to also affect Mi monotonically.

Both monotonicity assumptions restrict πi, so that in most situations arguments for one of

these to be plausible also make the other plausible. However, they are logically independent

(we expand on this in Appendix E). Finally, for our second sensitivity model, we assume

that the covariance of the potential outcomes (M(0),M(1)) is non-negative. This assumption

allows us to use the data to bound a parameter and effectively decreases the width (but not

the midpoint) of the resulting bounds. If analysts are not willing to impose this assumption

and they find a large mean effect of Zi on Mi, we suggest that they allow for larger values

of the second sensitivity parameter σγi than is otherwise plausible. We discuss this in more

detail in Appendix D.3.

Under these assumptions and the causal models for Yi, Mi, and Di, we show in Appendix

D that one can bound the weighted causal effect of Di on Yi, E

[
αi + δiπi

E[αi + δiπi]
βi

]
. The bias

term becomes

E[δiγi] = E[δi]E[γi] + cov(δi, γi). (6)

Here, E[δi] is the average causal effect of Z on M (equal to the share of Mi-compliers),

which can be estimated from the data. E[γi] is the direct effect of M on Y , which is the first

sensitivity parameter.13 If treatment effects were constant, it would be the only unknown.

However, if treatment effects vary and unobserved confounders impact on both M and Y , the

individual-level effects δi and γi will be correlated, and the covariance term will be different

13To connect this to the first sensitivity model, note that with Mi continuous, δi is possibly

continuous as well so that P (δi = 0) = 0, and, due to monotonicity, E[γi] = E[γi|δi > 0].
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from zero (Glynn 2012).

For example, in the Vietnam draft study, if unobserved parental SES Ui influences the

decision to attend college (Mi) as well as later wages (Yi), it is plausible that lower parental

SES makes both effects in question larger, and thereby creates a positive covariance between

them. For example, for men with low parental SES, the effect of the draft on attending

college (δi) will be relatively large (because they are more likely to be at the margin when

it comes to deciding for or against college, Card 1999). And we would expect the effect

of college on earnings (γi) in this group also to be relatively large because it has a higher

potential to benefit (Brand and Xie 2010). Accordingly, cov(δi, γi) would be positive. Taken

together, this could lead to large bias, even if the constituent average causal effects are small.

Previous approaches to sensitivity analysis (Conley, Hansen and Rossi 2012; Van Kippersluis

and Rietveld 2018) assume that all causal effects are constants and therefore cannot address

biases that arise from such scenarios.

We show in Appendix D that one can use the data to bound this covariance term.

Intuitively, the bounds increase when the standard deviation of M and the effect of Z on

M ’s standard deviation gets larger. The second sensitivity parameter then is the standard

deviation of γi, σγi . This quantity is in the same units as E[γi], and describes how much

γi typically varies. As illustrated, this standard deviation may be quite large even if mean

effects are thought to be small.

Finally, we can extend this sensitivity model to situations where the post-instrument

variable M may be measured with error. This is of special interest because often researchers

are made aware of potential violations of the exclusion restriction after initial data collection.

Although they then might gather some measure of a candidate Mi variable, it may well

be affected by measurement error. It turns out that such an error-ridden measure is still

informative and can be used for sensitivity analysis.

We formalize this by complementing the model in equations 2 - 5 with a model for M?
i ,

the observed measure of the now unobserved Mi:
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M?
i = Mi + ηi (7)

and by assuming Zi,Mi⊥⊥ηi and E[ηi] = 0. This is “classical” measurement error. In

Appendix D, we show that the resulting estimator for the bounds stays the same, although

measurement error does indeed widen the bounds compared to a situation without measure-

ment error.

4 An Illustration of the Proposed Methodology

We illustrate our new sensitivity analysis using data from Spenkuch and Tillmann (2017) as

well as from Carnegie and Marinov (2017). In the case of Spenkuch and Tillmann (2017), we

find that their original estimate is very robust to a large mean effect of the post-instrument

variable on the outcome as well as to all but implausibly large variances of this effect. In the

case of Carnegie and Marinov (2017), we find a more nuanced picture: While their estimate

is nominally not very robust against negative effects of Mi on Yi, it actually increases in size

and significance for substantively more plausible positive effects. Then, it is also robust to

some heterogeneity in these effects.

4.1 The Effect of Religious Composition on Support for National

Socialists

In Spenkuch and Tillmann (2017), one aim is to estimate the effect of Catholicism on the

vote share of the national socialists (NSDAP) in Germany in 1932. The data used is on the

county-level and comprises official election results and census data on the share of Catholics,

protestants, and other religions, as well as extensive socio-economic information like un-

employment rates in various demographic subgroups. Since the authors cannot rule out

unobserved confounders between religious composition and the Nazi vote share, they sug-
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gest using a county’s official religion measured in 1624 as an instrument for the effect of

religion on the propensity to vote for the NSDAP. They discuss evidence that the historical

county denomination was largely idiosyncratic, except for a few observable factors for which

they adjust in their statistical analysis. In our framework, these variables correspond to

pre-instrument covariates Xi.

Spenkuch and Tillmann (2017, p. 9) then further assert that for this historical variable to

be a valid instrument for the effect of interest, “it may influence voters’ decisions to support

the NSDAP only through its impact on covariates that are included in the regression”. We

take this as an indication that past religious composition Zi may have affected, for example,

the economic situation in counties in the 1930s, which we conceptualize as Mi variables.

One well-known mechanism for such an effect is Max Weber’s hypothesis of a “protestant

work ethic”. Furthermore, it is plausible that such economic variables also exerted a strong

influence on the Nazi vote share. Accordingly, the instrument would be valid if we faced

the situation of graph (a) in figure 2. Assuming the IV is valid, Spenkuch and Tillmann

(2017) estimate that a one percentage point increase in the share of Catholics in a county

decreased the NSDAP votes share by about 0.27 percentage points. This estimate is very

large and also quite precise (its estimated standard error is about 0.03). It is substantively

and statistically indistinguishable from OLS estimates, where Catholicism explains about

40% of the variance in NSDAP votes.

From this alone, it is clear that only strong deviations from the IV assumption can

change the substantive conclusions. We concentrate on one single Mi variable measuring a

highly relevant economic fundamental: The county-level unemployment rate among blue-

collar workers. Figure 4 plots our sensitivity analysis for the causal effect of Catholicism

on NSDAP vote. The X-axis depicts the first sensitivity parameter, the mean effect of

unemployment on the NSDAP vote share. The solid lines depict 95% confidence intervals

as a function of this sensitivity parameter when the heterogeneity in this effect (σγi), the

second sensitivity parameter, is set to 0. It is clear that due to a weak association of Zi with
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Mi, the inference is virtually unchanged.

The grey dashed lines visualize confidence intervals when there is more heterogeneity

in the causal effect of Mi on Yi. Here, we see that when σγi exceeds 0.9, the confidence

interval covers 0, so that the original inference is not robust. Is such a heterogeneous effect

reasonable to expect? Due to severe data limitations, the empirical literature on Weimar

elections focuses on descriptive inferences (King et al. 2008), so that it cannot directly inform

our assessment on the magnitude of σγi . Spenkuch and Tillmann (2017)’s own estimates for

mean effects of unemployment, which they do not claim are causal effects, are negative and

at most as large as the effect of Catholicism. The contemporary literature on the causes

of extreme-right voting (Jackman and Volpert 1996; Arzheimer 2009), finds positive effects

of both individual unemployment and aggregate unemployment rates. This suggests some

variability in effects. However, even if the effect of unemployment rates would vary uniformly

between, say, −0.75 and 0.5 percentage point increases across counties, the implied standard

deviation would only be about 0.36. While this introduces some additional uncertainty, the

main inference is robust.

4.2 The Effect of Foreign Aid on Human Rights

In Carnegie and Marinov (2017), the authors exploit the “essentially random” rotation of

the presidency of the Council of the European Union across member states as a variable

Zi that impacts on foreign aid Di transferred to countries that used to be colonies of that

presiding state. They use this variable as an instrument for aid to address the longstanding

and contested question of whether aid impacts human rights and democratic institutions of

a receiver country (Yi).

The paper carefully adjusts for institutional reforms that can be interpreted as pre-

instrumentXi variables and, since the data set is a panel of countries over years, lags variables

to avoid “posttreatment bias” (Carnegie and Marinov 2017, 680). This can be interpreted

as trying to avoid situations such as in graph (c) in Figure 2. In their main analysis, they do

26



Figure 4: 95% confidence intervals for the effect of Catholicism on NSDAP vote shares,
as a function of the mean effect of unemployment on NSDAP vote shares (E[γi]) and its
variability (σγi). Original estimates are replicated by the solid interval at E[γi] = 0. Based
on data from Spenkuch and Tillmann (2017).
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Figure 5: Lowest ends of 95% confidence intervals for the effect of (logged) foreign aid in $
million on human rights (0-14 scale), as a function of the mean effect of economic openness
(in percentage points) on human rights (E[γi]) and its variability (σγi). The original lowest
end is replicated by the solid line at E[γi] = 0. The original confidence interval was approx.
[0.03, 3.74]. Based on data from Carnegie and Marinov (2017).
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not adjust for any plausible post-instrument variables and find a very large, but short-lived

effect of foreign aid on a Human Rights index: An increase by $5 million increases the 0-14

index by 0.4 points, with an associated confidence interval [0.01, 0.8].

However, in their discussion of the exclusion restriction, Carnegie and Marinov (2017,

A5, Table A18) mention several observed variables that may be influenced by the instrument

and test for their association with the instrument, assuming a Null of zero association. As

discussed before, such an approach does not incorporate appropriately additional uncertainty

and mean biases that may occur.

In Figure 5, we plot the sensitivity of their main inference with respect to “economic

openness” as one of such Mi-variables (defined as the sum of national export and imports in

terms of GDP per capita). The plot zooms in on the Y-axis around 0 and shows the lower

end of confidence intervals for the effect of (logged) foreign aid on human rights.

The solid line indicates the endpoints of the confidence intervals as a function of varying

mean effects of economic openness. The literature suggests that this effect is likely to be

positive, but may also be highly heterogeneous (Hafner-Burton 2005; Hill Jr. and Jones

2014). We see here that while the effect of foreign aid on human rights becomes insignificant

for negative values of E[γi], it actually becomes larger and more significant for substantively

more plausible positive effects of Mi on Yi. This is true for values of E[γi] up to 0.02,

which would correspond to a fairly large effect.14 In such situations, the effect is also robust

against small heterogeneity in the effect of Mi on Yi (σγi). Here, the lowest dashed gray line

corresponds to situations where σγi = 0.002, and the lines in between have it decreasing by

0.0005. Such magnitudes seem plausible, if small. For example, if the effect varies uniformly

between 0 and 0.04, the induced standard deviation is already about 0.012. In sum, the

main inference becomes actually stronger for plausible values of E[γi], but then is sensitive

14In the data, median economic openness is around 70% and the 75% percentile is about

100%. Therefore, an effect of 0.02 would mean that moving from the median to the 75%

percentile translates into an 0.6 increase in the 0-14 Human Rights index.
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to plausible heterogeneity in γi.

5 Conclusion

Many applied researchers use instrumental variables in settings where they try to “control

away” a direct effect of the instrument on the outcome by measuring other variables M . In

this paper, we explained why this strategy only works under specific, restrictive assumptions.

Using causal graphs and potential outcomes, we highlighted the asymmetric role of pre-

and post-instrument covariates: While adjustment for the former is often necessary and

unproblematic, statistical control for the latter has to be taken with extreme caution. We

showed that with direct effects of the instrument through Mi, some local average treatment

effects may be identified, but we also highlighted various sources of asymptotic bias. We

discussed the limited value of existing robustness tests and provided a more suitable test of

a specific set of identification assumptions. Finally, we introduced a sensitivity analysis as

an alternative and illustrated it using the IV analysis in Spenkuch and Tillmann (2017) and

Carnegie and Marinov (2017). Here, it became clear that both mean effects, as well as the

variability of causal effects, may play an important role in the sensitivity of estimates.

We conclude by providing a checklist for applied researchers that want to use a (potential)

instrumental variable that may have a direct effect on the outcome through another variable:

1. Based on substantive knowledge, determine which of the graphs discussed in this paper

seems plausible for your research design. Specifically, be clear about which variables

are confounders Xi that influence Zi, Di, and Yi. and which variables Mi are driven

by Zi or Di.

2. If Mi is a mediator and not directly driven by Zi (as in graph (c) of figure 2), proceed

with standard estimation routines like 2SLS, where you condition only on Xi.

3. If your assumptions are equivalent to those in graph (a) of figure 2, implement the
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diagnostic test by checking whether Di and Mi are independent conditional on Zi. If

they are, condition on Xi and Mi in your statistical analysis.

4. If the test fails, reconsider your assumptions. Only the assumptions in figure 3 allow

for conditional dependency between Di and Mi and identification based on adjustment

for Xi and Mi.

5. If prior knowledge or the diagnostic test leads to the conclusion that Zi directly influ-

ences Mi and that the unobserved confounder also influences Mi (as in graph (b) of

figure 2), identification is not possible. Perform estimation conditional only on Xi and

then use our sensitivity analysis to assess whether substantive conclusions still hold.

Finally, we reiterate a point made, inter alia, by Conley, Hansen and Rossi (2012): A

strong but imperfect instrument may be preferable to an exogenous, but weak instrument.

The strength of an instrument is, of course, estimable. When a central post-instrument vari-

able Mi is measured, our method also allows researchers to better assess the consequences of

imperfections of their instrument, without the need to rely completely on a priori judgments

about exogeneity.
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Frölich, Markus and Martin Huber. 2017. “Direct and indirect treatment effects–causal

chains and mediation analysis with instrumental variables.” Journal of the Royal Statistical

33



Society: Series B (Statistical Methodology) .

URL: http://dx.doi.org/10.1111/rssb.12232

Glynn, Adam N. 2012. “The product and difference fallacies for indirect effects.” American

Journal of Political Science 56(1):257–269.

Glynn, Adam N. and Konstantin Kashin. 2017. “Front-Door Difference-in-Differences Esti-

mators.” American Journal of Political Science .

Hafner-Burton, Emilie M. 2005. “Right or robust? The sensitive nature of repression to

globalization.” Journal of Peace Research 42(6):679–698.

Hartman, Erin and F Daniel Hidalgo. 2018. “An equivalence approach to balance and placebo

tests.” American Journal of Political Science 62(4):1000–1013.

Hill Jr., Daniel W and Zachary M Jones. 2014. “An empirical evaluation of explanations for

state repression.” American Political Science Review pp. 661–687.

Imai, Kosuke and In Song Kim. 2019. “When should we use unit fixed effects regression

models for causal inference with longitudinal data?” American Journal of Political Science

63(2):467–490.

Imai, Kosuke, Luke Keele, Dustin Tingley and Teppeiarlarl Yamamoto. 2011. “Unpacking

the black box of causality: Learning about causal mechanisms from experimental and

observational studies.” American Political Science Review 105(4):765–789.

Imai, Kosuke and Teppei Yamamoto. 2013. “Identification and sensitivity analysis for multi-

ple causal mechanisms: Revisiting evidence from framing experiments.” Political Analysis

21(2):141–171.

Jackman, Robert W and Karin Volpert. 1996. “Conditions favouring parties of the extreme

right in Western Europe.” British Journal of Political Science 26(4):501–521.

34



Kern, Holger Lutz and Jens Hainmueller. 2009. “Opium for the masses: How foreign media

can stabilize authoritarian regimes.” Political Analysis 17(4):377–399.

King, Gary, Ori Rosen, Martin Tanner and Alexander F Wagner. 2008. “Ordinary economic

voting behavior in the extraordinary election of Adolf Hitler.” The Journal of Economic

History 68(4):951–996.

Knox, Dean, Will Lowe and Jonathan Mummolo. 2020. “Administrative Records Mask

Racially Biased Policing.” American Political Science Review p. 1–19.

Lu, Xun and Halbert White. 2014. “Robustness checks and robustness tests in applied

economics.” Journal of econometrics 178:194–206.

Marshall, John. 2016. “Coarsening Bias: How Coarse Treatment Measurement Upwardly

Biases Instrumental Variable Estimates.” Political Analysis 24(2):157–171.

Mellon, Jonathan. 2020. “Rain, Rain, Go away: 137 potential exclusion-restriction violations

for studies using weather as an instrumental variable.” Available at SSRN .

Montgomery, Jacob M, Brendan Nyhan and Michelle Torres. 2018. “How conditioning on

posttreatment variables can ruin your experiment and what to do about it.” American

Journal of Political Science 62(3):760–775.

Pearl, Judea. 2001. Direct and indirect effects. In Proceedings of the seventeenth conference

on uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc. pp. 411–420.

Pearl, Judea. 2009. Causality. Cambridge university press.

Pei, Zhuan, Jörn-Steffen Pischke and Hannes Schwandt. 2017. “Poorly Measured Con-

founders are More Useful on the Left Than on the Right.” NBER Working Paper 23232.

Rosenbaum, Paul R. 1984. “The consquences of adjustment for a concomitant variable that

has been affected by the treatment.” Journal of the Royal Statistical Society. Series A

(General) pp. 656–666.

35



Shpitser, Ilya, Tyler VanderWeele and James M Robins. 2010. On the validity of covariate

adjustment for estimating causal effects. In 26th Conference on Uncertainty in Artificial

Intelligence, UAI 2010. pp. 527–536.

Sovey, Allison J and Donald P Green. 2011. “Instrumental variables estimation in political

science: A readers’ guide.” American Journal of Political Science 55(1):188–200.

Spenkuch, Jörg L and Philipp Tillmann. 2017. “Elite Influence? Religion and the Electoral

Success of the Nazis.” American Journal of Political Science .

Stanig, Piero. 2015. “Regulation of speech and media coverage of corruption: An empirical

analysis of the Mexican Press.” American Journal of Political Science 59(1):175–193.

Van Kippersluis, Hans and Cornelius A Rietveld. 2018. “Pleiotropy-robust Mendelian ran-

domization.” International Journal of Epidemiology 47(4):1279–1288.

White, Halbert and Karim Chalak. 2010. “Testing a conditional form of exogeneity.” Eco-

nomics Letters 109(2):88–90.

White, Halbert and Xun Lu. 2011. “Causal diagrams for treatment effect estimation with

application to efficient covariate selection.” Review of Economics and Statistics 93(4):1453–

1459.

Wooldridge, Jeffrey M. 2010. Econometric analysis of cross section and panel data. MIT

press.

Wucherpfennig, Julian, Philipp Hunziker and Lars-Erik Cederman. 2016. “Who inherits

the state? Colonial rule and postcolonial conflict.” American Journal of Political Science

60(4):882–898.

36



Online Appendix

“Post-Instrument Bias”

Table of Contents

A Papers Using Instrumental Variables (Survey) . . . . . . . . . . . . . . . A2

B Causal Graphs and IV Identification using Potential Outcomes . . . . . . . A3

B.1 Deriving Independencies from Causal Graphs. . . . . . . . . . . . . . . A4

B.2 From Graphs to Potential Outcomes . . . . . . . . . . . . . . . . . . A5

C Proof of the Proposition . . . . . . . . . . . . . . . . . . . . . . . . A7

D Derivation of the Sensitivity Analysis . . . . . . . . . . . . . . . . . . . A9

D.1 Model 1: Binary Zi,Mi, Di . . . . . . . . . . . . . . . . . . . . . . . A10

D.2 Model 2: Binary Zi, Continuous Mi, Di . . . . . . . . . . . . . . . . . A11

D.3 Understanding cov(Mi(1),Mi(0)) > 0 . . . . . . . . . . . . . . . . . . A15

E Relationship Between Different Monotonicity Assumptions . . . . . . . . . A18

F Implementation & Statistical Inference in the Sensitivity Analysis . . . . . . A19

G References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A21

A1



A Papers Using Instrumental Variables (Survey)

Table A1 presents the counts of articles taken from the American Political Science Review,

the American Journal of Political Science, and the Journal of Politics that use instrumental

variables in their empirical analyses for the period from 2010 to the present. For each of the

papers found, we have coded whether there is an explicit discussion regarding the exclusion

restriction and among those where there is, whether there is a covariate being included as

a control to satisfy such restriction. The table shows that 75.12% of the papers discuss the

exclusion restriction and 19.02% include a covariate to address potential violations to this

assumption. When dividing the sample into two periods, one starting in 2010 up to 2014 and

a second one for papers published in 2015 and after, we see that the percentage of papers

that apply the fix has increased, from 14.1% to 22.05%.

Table A1: Exclusion Restriction and Added Covariates (Counts)

Exclusion restriction Added covariate Total articles

2010-2014 58 11 78
[74.36] [14.10] [100]

2015-2020 96 28 127
[75.59] [22.05] [100]

2010-2020 154 39 205
[75.12] [19.02] [100]

Exclusion restriction denotes the number of articles that explicitly discuss exclusion restric-
tions as identification assumptions in the instrumental variable analysis. Added covariate
denotes articles that include a control variable to address a violation of the exclusion re-
striction. Total articles is the number of articles using instrumental variable techniques.
Percentages are taken over total articles in the period and are in brackets.
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B Causal Graphs and IV Identification using Potential

Outcomes

Causal graphs, specifically directed acyclic graphs, consist of nodes, which visualize variables,

and edges, which are usually directed arrows from one node to another. A path is any

consecutive sequence of edges. In line with Pearl (2009), we view causal graphs as depictions

of a nonparametric system of structural equations that describes cause-effect relationships.

That is, nodes stand for observable or unobservable features of the units of interests, and

an edge or arrow from one such node to the other communicates the assumption that the

one variable causally affects the other variable in the population of interest. To be precise,

a causal model G consists of exogenous background variables Ui, usually assumed to be

unobserved, observed endogenous15 variables Vi, and structural (causal) functions fv for

each endogenous variable. These functions are deterministic in the sense that if we knew

all relevant inputs of fv for an endogenous variable, we could determine the value of this

variable exactly. Since Ui is assumed to be unknown, the observable variables Vi become

random variables. Whenever we want to indicate that observable variables are driven by an

unobserved confounder, we will use dashed nodes for edges emanating from this confounder.

This is equivalent to assuming that the “structural errors” Ui (i.e., all unobserved causes)

of the confounded variables are dependent. Throughout, we discuss acyclic graphs, that is,

graphs where no variable may have an effect on itself. Finally, we use upper-case letters do

denote random variables, and lower-case letters to denote realized or fixed values of these

variables.

15Here, the word “endogenous” simply means “explained in the model”.
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B.1 Deriving Independencies from Causal Graphs

To understand in which situations an instrument is (conditionally) valid, it is necessary to

derive independence relationships from the causal graph the researcher assumes. Through-

out, we do so by using an easy yet powerful tool called d-separation (Geiger, Verma and

Pearl 1990). In a given graph, a path p is said to be d-separated (or blocked) by a set of

nodes Zi if and only if

1. p contains a chain Xi → Mi → Yi or a fork Xi ← Mi → Yi such that the middle node

Mi is in Zi, or

2. p contains an inverted fork (or collider) Xi →Mi ← Yi such that the middle node Mi

is not in Zi and such that no descendant of Mi is in Zi.

A set of variables Zi is then said to d-separate Xi from Yi if and only if Zi blocks every

path from a node in Xi to a node in Yi. Importantly, d-separation implies conditional

independence, which we write as Xi⊥⊥Yi|Zi. This means that, once we know the value of

Zi, Xi does not predict Yi and vice versa. In addition, we employ graphoid axioms (Dawid

1979) to prove our results. We expand on these more technical aspects and give proofs in

the appendix. In the main body of this article, we stick as closely as possible to intuitive

explanations.

The fact that conditioning on a collider of two variables (or its descendant) makes these

variables dependent is central to understanding the failure of certain IV strategies, but may

be counterintuitive, so that an example is helpful. Consider two independent binary variables

A and B and a random variable C that is the sum of A and B. Accordingly, C can take

on the values {0, 1, 2}, and is a collider variable, with A and B pointing into it. A and B

may be random coin flips, so clearly knowing the value of A does not help in predicting B.

However, conditioning on the collider C means that we are told its value, for example 1.

The question then is whether A and B have become dependent, that is, whether knowing C

and A now tells us anything about B. The answer is a clear yes: Knowing the result C is 1
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and, for example, that A is 0, we know for sure that B has to be 1. Put differently, knowing

the result of a process (C) and the value of one of its independent inputs (A) also lets us

predict the value of the other input (B). The same mechanics apply if we happen to know

the realization of a descendant of C. For example, let D be a variable that takes on the

value 1 when C equals 1, and is 0 otherwise (so that it is a binary proxy for C). Knowing

that D equals 1 and that A equals 0 also leads to the prediction that B equals 1.

To give a more elaborate example of d-separation, consider Figure 1 in the main text.

Let us assume for the moment that we could measure Ui and we were interested in its

dependency with Zi . In this case, one would find four paths between the instrument Zi and

Ui: Zi → Di ← Ui, Zi ← Xi → Di ← Ui, Zi → Di → Yi ← Ui, and Zi ← Xi → Yi ← Ui.

The first two paths contain the variable Di as a collider and so are unconditionally blocked.

The last two paths contain Yi as a collider and therefore are blocked as well. In summary,

all paths between Zi and Ui are blocked unconditionally, so that Zi and Ui are d-separated

and Zi⊥⊥Ui holds. Put informally, this conveys the notion that a valid instrument needs to

be independent from unmeasured causes of Yi. Accordingly, if one could measure Ui for each

individual, a linear regression of it on Zi should yield a coefficient of zero (asymptotically

and under the assumption that the regression is correctly specified).

B.2 From Graphs to Potential Outcomes

Having discussed the basic properties of causal graphs, we now introduce potential out-

comes and the causal effects of interests. As usual, the identification assumptions need to

be stated in independence relationships of observed and counterfactual variables. Following

Pearl (2009), we connect causal graphs and potential outcomes by defining the latter quite

naturally as solutions to the structural model that researchers assume. The potential out-

come of variables Yi ∈ Vi when variables Xi ∈ Vi are set to x is denoted Yi(X = x) and

is given by Yi(Gx). Gx stands for a manipulated version of the original causal model G in

which all functions fXi
are deleted and replaced by constants x (Pearl 2009, 204).
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To give a simple example, consider the graph Di → Yi ← Ui. In this graph, the potential

outcome of Yi in unit i when Di is set to d is

Yi(D = d) = fy(d, Ui)

which, since d is fixed, is a random variable only because it is a function Ui, which stands

for all unobserved causes of Yi. It follows immediately that Di⊥⊥Yi(Di = d) (“ignorability”)

holds, because Di and Ui are d-separated unconditionally (since Yi is a collider that blocks

the only path between Di and Ui). In DAGs, ignorability of the treatment can also be

evaluated by simple graphical criteria like the adjustment criterion (Shpitser, VanderWeele

and Robins 2010). However, we resort to this structural definition of counterfactuals to

make explicit the exact reasons for why IV identification may fail, and because such general

graphical criteria for IV problems do not exist.

Our approach is fully compatible with previous results that used counterfactuals to com-

municate causal assumptions. Approaches that define potential outcomes as byproducts of

structural equation are also becoming standard in econometrics, see for example Imbens and

Newey (2009), Chernozhukov et al. (2013), and especially White and Lu (2011), who also

employ causal graphs. It should also become clear that potential outcomes are indeed a gen-

eralization and refinement of the “structural error” that plays a central role in econometrics.

Again, this error term in a structural or causal equation stands for all unobserved factors

that influence the outcome when observed determinants are held fixed, and it should not

be confused with the regression error. The latter stands for unit’s deviations in Yi from its

conditional mean.16

16See Imbens (2014) for a discussion of this issue in an IV context.
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C Proof of the Proposition

For ease of exposition, we first introduce some useful properties of conditional independence:

Lemma 1. (Dawid 1979) If Xi⊥⊥Yi|Zi and Ui is a function of Xi, then 1) Ui⊥⊥Yi|Zi and 2)

Xi⊥⊥Yi|Zi, Ui.

Lemma 2. (Contraction, Pearl (2009)) Xi⊥⊥Yi|Zi and Xi⊥⊥Wi|Zi, Yi imply Xi⊥⊥Yi,Wi|Zi.

Lemma 3. Zi⊥⊥Ui|Xi implies Zi⊥⊥f(Ui), g(Ui)|Xi, where f, g are arbitrary functions.

Proof. Zi⊥⊥Ui|Xi implies Zi⊥⊥f(Ui)|Xi as well as Zi⊥⊥Ui|Xi, f(Ui) by lemma 1. The latter

then similarly implies Zi⊥⊥g(Ui)|Xi, f(Ui). By contraction, we then have Zi⊥⊥f(Ui), g(Ui)|Xi.

We can now prove the statements in the main text. Throughout, we will assume there

are additional observed confounders Xi influencing all observed variables.

Proof of the Proposition. In graph (a) of figure 2, we have Yi(Di = d) = fy(d,Mi, Xi, Ui) and

Di(Zi = z) = fd(z,Xi, Ui). By d-separation, the graph implies Zi⊥⊥Ui|Xi,Mi. By Lemma 3,

this implies Yi(Di = d), Di(Zi = z)⊥⊥Zi|Xi,Mi. Identification of the Xi,Mi-specific LATE

then follows as in Angrist, Imbens and Rubin (1996).

In graph (b) of figure 2, Yi(Di = d) = fy(d,Mi, Xi, Ui) = fy(d, fm(Zi, Xi, Ui), Xi, Ui),

which depends on Zi. Conditioning on Xi does not block this dependency. Conditioning on

Xi,Mi makes Zi and Ui dependent, so the CIA is generally violated. However, Di(Zi = z) =

fd(z,Xi, Ui), and Di⊥⊥Ui|Xi by d-separation, so Zi⊥⊥Di(Zi = z)|Xi holds and the ATE of

Zi on Di is identified.

In graph (c) of figure 2, Yi(Di = d) = fy(d,Xi, Ui) and Di(Zi = z) = fd(z,Xi, Ui).

d-separation implies Zi⊥⊥Ui|Xi, so by lemma 3, Yi(Di = d), Di(Zi = z)⊥⊥Zi|Xi. However,

conditioning on Mi makes Zi and Ui dependent, because we are conditioning on a descendant

of a collider.

In figure 3, we have
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Yi(Di = d), Di(Zi = z,Mi = m)⊥⊥Zi|Xi,Mi

(CIA.2)

First, in this graph, Yi(Di = d) = fy(d,Mi, Xi, Ui) andDi(Zi = z,Mi = m) = fd(z,m,Xi, Ui).

By d-separation, we have Zi⊥⊥Ui|Xi,Mi. Lemma 3 then implies CIA.2. Additionally, we

assume

P (Di(Zi = 1,Mi = m) ≥ Di(Zi = 0,Mi = m)) = 1 for all m (partial monotonicity)

E[Di|Zi = 1,Mi = m,Xi]− E[Di|Zi = 0,Mi = m,Xi] 6= 0 for all m (relevance)

Consider the Xi,Mi-adjusted Wald estimator

E[Yi|Zi = 1,Mi = m,Xi]− E[Yi|Zi = 0,Mi = m,Xi]

E[Di|Zi = 1,Mi = m,Xi]− E[Di|Z = 0,Mi = m,Xi]

Under the above assumptions, the numerator evaluates to

E[Yi|Zi = 1,Mi = m,Xi]− E[Yi|Zi = 0,Mi = m,Xi] =

E[(Yi(D = 1)− Yi(D = 0))(Di(Zi = 1,Mi = m)−Di(Zi = 0,Mi = m))|Mi = m,Xi] =

E[Yi(D = 1)− Yi(D = 0)|Di(Zi = 1,Mi = m,Xi) > Di(Zi = 0,Mi = m,Xi)]×

P (Di(Zi = 1,Mi = m) > Di(Zi = 0,Mi = m)|Xi).

The first step follows from

E[Yi|Zi = z,Mi = m,Xi] =

E[Yi(Di = 0) + (Yi(D = 1)− Yi(D = 0))Di(Zi = z,Mi = m)|Zi = z,Mi = m,Xi],
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for z = 0, 1 and CIA.2. The second uses the fact that Di(Zi = 1,Mi = m) − Di(Zi =

0,Mi = m) is either one or zero by partial monotonicity.

The denominator is

E[Di(Zi = 1,Mi = m)|Mi = m,Xi]− E[Di(Zi = 0,Mi = m)|Mi = m,Xi] =

P (Di(Zi = 1,Mi = m) > Di(Zi = 0,Mi = m)|Mi = m,Xi)

The first step follows from consistency and CIA.2, and the second step follows from partial

monotonicity. Accordingly, the Wald estimator evaluates to

E[Yi(D = 1)− Yi(D = 0)|Di(Zi = 1,Mi = m) > Di(Zi = 0,Mi = m)|Xi].

D Derivation of the Sensitivity Analysis

The structural models in equations 2–5 suggest estimation of all regression functions using

linear models where the control variables Xi enter separately. Therefore, we leave the con-

ditioning on Xi implicit in the following; all variables can be thought of as having partialled

out their correlation with Xi. Consistent with this, we also assume that our sensitivity pa-

rameters are independent from Xi (see Knox, Lowe and Mummolo (2020, p. 11) for a similar

approach).

Sensitivity model 1, in contrast to model 2, implies no assumptions on the functional

form of E[Di|Zi, Xi] and E[Mi|Zi, Xi]. Then, two-stage least squares regression nonetheless

is robust (at least if the true values of the sensitivity parameter were known) (Vansteelandt

and Didelez 2018, Proposition 3).
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D.1 Model 1: Binary Zi,Mi, Di

In addition to the model in equation 2, we here assume

Zi⊥⊥Yi(d,m), Di(z),Mi(z) for all z, d,m (8)

P (Di(Zi = 1) ≥ Di(Zi = 0)) = 1 (9)

P (Mi(Zi = 1) ≥Mi(Zi = 0)) = 1 (10)

Under these assumptions, we have

E[Yi|Zi = 1]− E[Yi|Zi = 0] =

E[βi(Di(Zi = 1)−Di(Zi = 0))] + E[γi(Mi(Zi = 1)−Mi(Zi = 0))] =

E[βi|Di(Zi = 1) > Di(Zi = 0)]P (Di(Zi = 1) > Di(Zi = 0))+

E[γi|Mi(Zi = 1) > Mi(Zi = 0)]P (Mi(Zi = 1) > Mi(Zi = 0)). (11)

The first equality follows from the model equation and assumption 8. The second equality

follows the monotonicity assumptions 9 and 10.

By the exogeneity assumption 8, P (Mi(Zi = 1) > Mi(Zi = 0)) and P (Mi(Zi = 1) >

Mi(Zi = 0)) are identified as E[Di|Zi = 1]−E[Di|Zi = 1] and E[Mi|Zi = 1]−E[Mi|Zi = 1].

Combining this, we have that

E[βi|Di(Zi = 1) > Di(Zi = 0)] =

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Z = 0]
− E[γi|Mi(Zi = 1) > Mi(Zi = 0)](E[Mi|Zi = 1]− E[Mi|Zi = 1])

E[Di|Zi = 1]− E[Di|Zi = 1]
.

(12)

Here, E[βi|Di(Zi = 1) > Di(Zi = 0)] is the LATE of interest, E[Yi|Zi=1]−E[Yi|Zi=0]
E[Di|Zi=1]−E[Di|Z=0]

is
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a standard Wald (two-stage least squares) estimator with outcome Yi, treatment Di, and

instrument Zi, E[γi|Mi(Zi = 1) > Mi(Zi = 0)] is the sensitivity parameter, and

E[Mi|Zi = 1]− E[Mi|Zi = 1]

E[Di|Zi = 1]− E[Di|Zi = 1]

can be estimated by a two-stage least squares regression with outcome Mi, treatment Di,

and instrument Zi.

D.2 Model 2: Binary Zi, Continuous Mi, Di

Here, our assumptions in addition to the model in equations 2–5 are

Zi⊥⊥(βi, γi, αi, πi, δi, ε1i, ε2i, ε3i) (13)

P (αi + δiπi ≥ 0) = 1 (14)

P (δi ≥ 0) = 1 (15)

cov(Mi(0),Mi(1)) ≥ 0. (16)

Under these assumptions, we have

E[Yi|Zi = 1]− E[Yi|Zi = 0] =

E[βi(αi + δiπi)] + E[δiγi].

(17)

This holds because Zi is independent from all causal effects and the error terms.

E[δiγi]

is the bias term we need to bound.

Note that with Model 1 (with binary Di,Mi), we would have E[δiγi] = E[γi|δi = 1]P (δi =
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1) = E[γi|δi = 1](E[Mi|Zi = 1] − E[Mi|Zi = 1]). This explains why we have only one

sensitivity parameter in Model 1, whereas the next section shows that we have two unknown

parameters in Model 2.

Using similar reasoning as before, we also have

E[Di|Zi = 1]− E[Di|Zi = 1] = E[αi + δiπi] (18)

and

E[Mi|Zi = 1]− E[Mi|Zi = 0] = E[δi]. (19)

D.2.1 With Measured Mi

Rewrite the bias term as

E[δiγi] = cov(δi, γi) + E[δi]E[γi]. (20)

In the second term, E[δi] is point-identified as E[Mi|Zi = 1]−E[Mi|Zi = 0], while E[γi]

will be a sensitivity parameter.

Further rewrite

cov(δi, γi) = cor(δi, γi)σδiσγi . (21)

In this latter term, we can decompose σδi as

√
var(Mi(1)) + var(Mi(0))− 2cov(Mi(1),Mi(0)). (22)

The variance terms are nonparametrically point-identified as var(Mi|Zi = z). Regarding

the covariance, intuition might suggest that monotonicity (Mi(1) ≥ Mi(0)) implies that it

is positive, but one can create joint distributions of (Mi(1),Mi(0)) where this is not the

case. However, the Frechét-Hoeffding bounds (e.g. Aronow et al. (2014)) for this quantity
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using the marginals are not sharp, because the monotonicity does in fact improve the lower

bound. Very recent work characterizes this lower bound under monotonicity (Nutz and Wang

2020). Since we are not aware of research on how to estimate this bound, especially with

covariates, we make the simplifying assumption that cov(Mi(1),Mi(0)) ≥ 0. We evaluate the

consequences and the plausiblity of this assumption in section D.3. Using this assumption,

an upper bound for equation 22 is

√
var(Mi|Zi = 1) + var(Mi|Zi = 0). (23)

Further using −1 ≤ cor(δi, γi) ≤ 1, we can bound equation 21 as

−
√

(var(Mi|Zi = 1) + var(Mi|Zi = 0))σγi

≤ cov(δi, γi) ≤√
(var(Mi|Zi = 1) + var(Mi|Zi = 0))σγi ,

(24)

where σγi , the standard deviation of the direct causal effect of Mi on Yi, is the second

sensitivity parameter.

Collecting terms and rearranging, we have

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
− 1

E[Di|Zi = 1]− E[Di|Zi = 0]
×

{(E[Mi|Zi = 1]− E[Mi|Zi = 0])E[γi] +
√
var(M |Z = 1) + var(M |Z = 0)σγi}

≤ E

[
αi + δiπi

E[αi + δiπi]
βi

]
≤

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
− 1

E[Di|Zi = 1]− E[Di|Zi = 0]
×

{(E[Mi|Zi = 1]− E[Mi|Zi = 0])E[γi]−
√
var(M |Z = 1) + var(M |Z = 0)σγi},

(25)
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if
E[Mi|Zi = 1]− E[Mi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
is positive. If it is negative, the inequality signs reverse.

D.2.2 With Mismeasured Mi

As before, we want to gain information on the bias term (equation 20) from the data. E[δi]

remains identified under the measurement model in equation 7 and the stated assumptions

on the measurement error: E[M?
i |Z = 1]−E[M?

i |Z = 0] = E[Mi+ηi|Z = 1]−E[Mi+ηi|Z =

0] = E[Mi|Z = 1]− E[Mi|Z = 0] = E[δi].

It further turns out that the variances var(Mi(z)) are not point-identified anymore, al-

though they can be bounded from above by the same quantities as in the case without

measurement error. Accordingly, the resulting bounds for the sensitivity analysis do not

change. To see why, consider

var(Mi(z)) = var(Mi|Zi = z) = var(M?
i − ηi|Z = z) =

var(M?
i |Z = z) + var(ηi|Z = z)− 2cov(M?

i , ηi|Z = z) =

var(M?
i |Z = z) + var(ηi)− 2cov(M?

i , ηi|Z = z).

(26)

Regarding this last term, we have

cov(M?
i , ηi|Z = z) = cov(Mi + ηi, ηi|Z = z) =

cov(Mi, ηi|Z = z) + var(ηi|Z = z) = var(ηi).

(27)

Accordingly,

var(Mi(z)) = var(M?
i |Z = z)− var(ηi) ≤ var(M?

i |Z = z). (28)

This bound could be improved upon if we could improve the trivial zero lower bound for

var(ηi). However, it is only possible to bound var(ηi) from above using var(Mi).
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In sum, equation 28 shows that the observed conditional variance of the measurement

is equal to or larger than the marginal variance of the potential outcome of the actual Mi

variable. If measurement error is large, the empirical estimate will be far away from zero, even

though the true marginal variance might be close or equal to zero. This is the information

loss incurred by the measurement error.

Accordingly, the bounds in equation 25 remain valid, substituting M?
i for Mi.

D.3 Understanding cov(Mi(1),Mi(0)) > 0

We here show how to understand the assumption that cov(Mi(1),Mi(0)) ≥ 0, how to detect

possible violations to it, and how to incorporate those into the sensitivity analysis.

First, the assumption that cov(Mi(1),Mi(0)) ≥ 0 decreases the width of the bounds for

the causal effect of interest, but has no effect on the location of the bounds. To see why,

consider again our expression for cov(δi, γi), which is one part of the bias term:

cov(δi, γi) = cor(δi, γi)σδiσγi

The standard deviations are always non-negative. The correlation is unknown and be-

tween −1 and 1. Therefore, this covariance between the causal effects is always in the interval

[−σδiσγi , σδiσγi ]. Our analysis bounds σδi from above using the data. Given values of the

sensitivity parameter σγi , this results in bounds centered at 0 that are “added” to the mean

estimate (which already may include bias adjustments from the first sensitivity parameter).

The empirical bound for σδi is based on writing it as

√
var(Mi|Z = 1) + var(Mi|Z = 1)− 2cov(Mi(1),Mi(0)).

Clearly, when the covariance is positive, this term becomes smaller, and the width of the

resulting bound [−σδiσγi , σδiσγi ] becomes smaller, too.

Second, to illustrate the relationship between the monotonicity assumption Mi(1) ≥
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Mi(0) and bounds on cov(Mi(1),Mi(0)), consider Figure A1. On the X- and Y-axis, we have

values for potential outcomes Mi(0) and Mi(1), respectively. Without loss of generality, we

assume here that these are between 0 and 1.

The dashed diagonal line graphs the monotonicity constraint Mi(1) ≥ Mi(0). We then

plot the domains of two different joint distributions for Mi(1),Mi(0). In both cases, Mi(0)

is uniformly distributed on [0, 0.3], and therefore has a mean of 0.15. The domain of Mi(1)

differs between the two distributions, but it is always a finite closed interval. The dotted

squares indicate the domains of all possible joint distributions given the domains of the

marginal distributions.

The solid, piecewise linear function in the bottom left corner determines Mi(1) as follows:

Mi(1) =


0.4−Mi(0) if 0 ≤Mi(0) ≤ 0.2

Mi(0) if 0.2 ≤Mi(0) ≤ 0.3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Mi(0)

M
i(

1)

Figure A1: Understanding the relationship between the monotonicity constraint and the
covariance between potential outcomes. Solid lines are the domains of two different joint
distributions of Mi(0),Mi(1) with negative covariance. Dotted lines indicate the domain of
all possible joint distributions associated with each of these two cases. The dashed diagonal
graphs the monotonicity constraint.

In this model, the average causal effect of Zi on Mi is 1
15

. While the downward sloping
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part of the function contributes to a negative covariance, it cannot cross the monotonicity

constraint, and the upwarding sloping part of the function then increases the covariance.

Clearly, the monotonicity constraint restricts the covariance from becoming very negative.

To make the covariance more negative, one could shift Mi(1) upwards so that the mono-

tonicity constraint is without consequence. The second line towards the top plots such a

function (Mi(1) = 0.8−Mi(0)). Since the distribution of Mi(0) does not change, the average

causal effect here is much larger (0.55)

This suggests that while the monotonicity condition does not ensure that cov(Mi(1),Mi(0))

is actually positive, it suggests that a negative covariance is associated with large positive

mean effects of Zi on Mi.
17

In sum, while the cov(Mi(1),Mi(0)) ≥ 0 assumption used to bound σδi from above may

not automatically hold under our monotonicity assumption, violations of it are likely to

occur together with a large mean effect of Zi on Mi. The latter is identified from the data

and directly incorporated into our sensitivity analysis. If analysts are not willing to impose

cov(Mi(1),Mi(0)) ≥ 0 and they find a large mean effect of Zi on Mi, we therefore suggest

that they allow for larger values of the second sensitivity parameter σγi than is otherwise

plausible. This will increase the width of the bounds [−σδiσγi , σδiσγi ] and can therefore

to some degree address concerns stemming from the fear that the covariance between the

potential outcomes is negative.

17If the mean effect of Zi were negative, the monotonicity constraint would reverse and

would restrict the covariance from becoming too positive when mean effects are small.
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E Relationship Between Different Monotonicity As-

sumptions

To assess the relationship between the traditional monotonicity assumption and partial

monotonicity, consider the case of binary Zi and binary Mi, and no covariates. In this

case, a saturated structural model for Di without any functional-form assumptions can be

written

Di = α + β1iZi + β2iMi + β3iZiMi + εi

where α = E[Di(Zi = 0,Mi = 0)], β1i = Di(Zi = 1,Mi = 0) − Di(Zi = 0,Mi = 0),

β2i = Di(Zi = 0,Mi = 1) − Di(Zi = 0,Mi = 0), and β3i = Di(Zi = 1,Mi = 1) − Di(Zi =

0,Mi = 1)− (Di(Zi = 1,Mi = 0)−Di(Zi = 0,Mi = 0)).

Monotonicity requires Di(Zi = 1) ≥ Di(Zi = 0) for all i, which restricts the total effect of

Zi on Di. This is equivalent to stating that β1i+β2iMi(Zi = 1)+β3iMi(Zi = 1) ≥ β2iMi(Zi =

0) for all i. This restricts the joint distribution of (β1i, β2i, β3i,Mi(Zi = 0),Mi(Zi = 1)).

Note that the Mi(z) will generally be associated with the coefficients when Mi and Di are

confounded, but this is ruled out by the assumptions we present to identify the new LATE.

Partial monotonicity is equivalent to the requirement that β1i+β3im ≥ 0 for all m and i,

where m is constant. This restricts the direct effect of Zi on Di not going through Mi to be in

the same direction for all m. This restricts the distribution of (β1i, β3i). In theory, there could

be fine-tuned distributions of (β1i, β2i, β3i,Mi(Zi = 0),Mi(Zi = 1)) where monotonicity holds

but partial monotonicity does not. However, it seems natural to assume that the restrictions

on β1i, β3i also hold when suitable restrictions on (β1i, β2i, β3i,Mi(Zi = 0),Mi(Zi = 1)) are

plausible.
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F Implementation & Statistical Inference in the Sen-

sitivity Analysis

For implementing the sensitivity analysis, we need to make a number of choices for estimation

and inference. As stated before, and consistent with most IV applications, estimation of

the mean differences in equation 25 can be pursued using two-stage least squares. For the

variance terms, we pick corresponding linear conditional variance models (Shalizi 2019, 217).

We first estimate auxiliary mean regressions

E[Mi|Zi, Xi] = ζ1 + ζ2Zi + (Xi − X̄i)ζ3

where ζ1, ζ2 are scalars and ζ3 is a vector, and generate residuals ri = Mi− Ê[Mi|Zi, Xi]. We

then estimate var(M |Z = z) via

E[r2i |Zi, Xi] = ζ4 + ζ5Zi + (Xi − X̄i)ζ6

where ζ4, ζ5 are scalars and ζ6 is a vector. Under this model, we have

var(M |Z = z) =

∫
x

ζ4 + ζ5z + (x− X̄i)ζ6dx = ζ4 + ζ5z,

so that our estimate for var(M |Z = 1) + var(M |Z = 0) is 2ζ4 + ζ5z.

Finally, we use the nonparametric (paired) bootstrap to estimate the sampling distribu-

tion of the resulting estimator for the bounds. Young (2019) has recently documented the

widespread presence of non-IID errors in two-stage least squares regressions and suggests the

bootstrap to improve statistical inference relative to standard robust covariance estimators.

Specifically, we implement the “bootstrap-c”, which involves drawing from the original

sample with resampling and storing point estimates β̂ of the bounds based on this sample. We

base statistical inference on both “percentile” and the adjusted, “basic” bootstrap confidence

interval (Davison and Hinkley 1997, 193–202), using the R package boot.
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We find that the percentile method very closely replicates the results of Spenkuch and

Tillmann (2017). In our replication of Carnegie and Marinov (2017), we find that an ap-

proach that uses a simple (non-clustered) bootstrap, percentile confidence intervals, and that

removes outliers from the bootstrap distribution according to the standard boxplot defini-

tion (i.e., samples that are more than 1.5 inter-quartile ranges below the 25% or above the

75% quantile) also closely replicates the original results. Some remaining minor discrepan-

cies may be due to slight changes in the sample composition, since we have to delete some

observations for which measures of Mi are not available (as explained in the main text,

Carnegie and Marinov (2017) did not adjust for Mi in their main analysis, but they eval-

uated its association with the instrument). All in all, this suggests that our approach can

closely replicate results from standard two-stage least squares implementations, and may be

additionally more robust to outliers as suggested by Young (2019).
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